

AC2023 Post Mortem
 Presented by AC2023 QMs

"Its not about how we make mistakes, but how we correct them." -- KY

1. Introductions

The AC2023 Family

AC committee

Chairman: Chong Ka Shing (NTUAS)
Deputy Chairman: Yong Fu Hsien (NUSAS)
NUSAS Vice President: Wang Mingchuan

AC QM Community

Head Question Master: Janani Ramachandran (NUSAS)
Deputy Head Question Master: Fredrik Hanson (NTUAS)

Department Heads

Publicity: Nicholas Tan

Head of Administration: Mohamad Hirwan
Deputy Head of Admin: Celeste Ang
Head of Logistics: Troy Tim
Head of Finance: Muhammad Tawakul

AC QM Community

OIC Project: Nicholas Phung-Zhang
OIC Observation: Wang Mingchuan
OIC Teams Round: Fong Ken Rui
OIC Individual Round: Fredrik Hanson
OIC Finals: Trakantannarong (Golf)
QMs: Lim Kia Yee, Wan Si Chen, Lim Tse Xiong Brendan, Jerry Qu, Lew Choon Hean, Tham Kai Wen, Benjamin Luo

AND ALL THE QUESTION MASTERS !!

2. Project Round

Junior Distribution

Senior Distribution

Things to note

Citations:
People did not submit citations.
Late:
Quite a few. Teams have been penalized accordingly

Accuracy:

Please make sure that you know the topic at hand and not start smoking.
Other Issues:
Teamwork: one team only had one person for project
Size of the poster

Good projects

The best for Junior RI/2

Categories

Terrestrial

Composed of rock, silicate, water; carboñ Rocky bodies till $2 x$ the earth radiús

DEFINITION

Any planet outside our solar system

Hydrogen and helium
dominated atmosphere + core of heavier metalis/rock

Super-Earths ,
a brief tour/introduction to Singapore's night sky [8-10pm]

Good projects

Junior Honnarahle Mention NY/1

spring [apr-jun]
visible spring constellations: coma berenices, corona borealis, leo, boötes, virgo, corvus

visble circumpolar cons [northern] ursa mjor [southern] centaurus, crux, carina, vela

other visible constellations: Wwinter] canis major, canis minor, orion,
gemini, taurus, aurige, puppis Ccummer) ophivchus, scoprivis, lyra, cygn is aquila, sagittarius, corona australis
other visible stars:
cor caroli [ceanes venatici, delta crateris [crater], alpherd [hydra]
visble clusters/Dsos:
visible clusters
coma star cluster [coma berenices], orion nebula [orion], pleiedes [tavrus], omega centauri [centaurus], carina nebula [carina]
non-visible but photographable constellations:
crater hydra, columbe, lepus, pyxis, leo minor non-visibe but photog ophable constell tions
crater, hydre, columba, lepus, pyxis, leo minor:
libra, serpens, canes ventici
autumn [oct-dec]
visible autumn constellations: pegasus, andromeda, aries

Visible circumpolar constellations

 [northern] cassopeia, perseu[southern] grus
other visible constellations: Csummer] ophivchus, scorpius, lyra, c
aquila, ssgitherius, corona australis aquila, sagit tarius, corona australis
[winter] orion, taurus, canis major, canis minor, aurige, gemini other visible stars:
fomalhout [piscis austrinus],
diphda \& menker [Cetusl alder

visible clusters/DSOs:

andromeda galaxy [andrueda], double cluster [cassopeia],
ptolemy cluster [scorpius]

none 12 Iun 15 202122.15 MocRitchic

- Scorpies (white), Librac (eurple), -Scorpis (white), Litra (purple),
Ophiuchus (biue), Serpens (Pink) $]$
fomalhaut [piscis austrinus] diphda \& menkar [ceetus], peacock [pavo], cor caroli [canes venatici], alderamin [cepheus]
visible clusters/DSO:
coma star cluster [co
come
ptolemy cluster [scorpous]
non-visible but photographable constellations:
leo minor libra, serpens, scutum, canes venstici, crater. hydre, delphinus, telescopium
, winter [jan-mar]
visible winter constellations:
taurus, orion, canis major, canis minor, auriga, puppis, gemini

Visble Circumpolar consteliations [northern] ursa major, persseus
[southern] carima, vela, crux, coun
other visible constellations:
[avtumn] aries, pegasus, andro [astumni Jries, pegasus
[spring] le, corvis, virgo
other visible stars:
fomalhhut [[piscis zustrinus], diphdo \& menkar [ceetus], achernar [eridida \& menkar [ceevus], a
alphard [hydre]

visible clusters/DSO:

orion nebula Sorions), pleiodes [taurus], andromeda
galaxy [andromeda), double cluster [Casssopeia],
carina nebula [carina]

non-visible but photographable constellations:

columba, pictor, lepus, eridanus, dorsdo,
monoceres, hydra, pyxis apuarius

Good projects

Junior Honorable Mention RV/1

11: EXPLAIN WHAT THE FERMI PARADOX IS
"W/HERTE \|S EV ERMYBOBM?"

WHAT IS THE FERMI	HISTORY OF THE FERMI PARADOX
PARADOX?	

if we know that life can occur on a planet as average
as Earth, can't it occur as earth, can
elsewhere?
ELSEWH TRE?
Given the speed of
ADVANCEMENTS OF TECHNOLOOY ON EARTH AND ESTIMATES OF the drake equation, we SHould have observed SIGHTINGS OF OTHER LIFE
FORMS IN OUR UNIVERSE BY now.
but we see nothing but a dead
And quiet cosmos. it's only MANKIND HERE.
is known as the fermi panaion.
IS KNOWN AS THE FERMI PARADOX.
so... do altens really exist:

WHY HAS IT REMAINED A MYSTERY?
Recocwising otmer lite ronms is veay purficult pue to oun recognising other life forms is very difficult due to our
technological limitations, our lack of understanding of life TECHNOLOGICAL LIMITAATIONS, OUR LACK OF UNDERSTANDING OF LIFE
OUTSIDE OF EARTH, THE BARRIERS OF TIME AND THE LIMITATION OF SPACE in our observable universe. hence, the existence of aliens remains
A mystery.
THE DRAKE EQJATION
$N=R_{\bullet} \cdot F_{p} \cdot N_{E} \cdot F_{L} \cdot F_{i} \cdot F_{c} \cdot L$

PQSSIBLE SOLOTIONS TO THE FERMI PARADQX

Good projects

The best for Senior RV/2

Case study 1: Orion Nebula (Messier 42)

Case study 2: The Ring Nebula (Messier 57)

Case study 3: The Crab Nebula (Messier 1)

7. Sources of the different colours observed in photographs of nebulae

What is a Nebula?
By: Sian Sing Wen, Tiu Kin Yon, On Vi Giant, Lu
glow with beautiful colours . These colours are the result of different elements within the nebula cause them to

Types of Nebulae

Emission Nebulae EN are formed of ionized gases that emit light of various wavelengths
(Swinburne University of Techno (SUT), nd.). They tend to appear as they are composed of about 90 $\begin{array}{lll}\text { hydrogen, with the remaining being } & \text { mostly appear blue, as blue light is } & \text { completely opaque at visible } \\ \text { efficiently by small } & \text { wavelengths. They mostly comprised of } \\ \text { helium. } & \\ \text { hexygen nitrogen and other } & \text { dust particles within the nebula } & \end{array}$ helium, oxygen, nitrogen and other dust particles within the nebula helium and hydrogen (SUT, n.d.; Stewart, elements (Stewart, Suzy., nod.).
(4) Planetary Nebulae

PN is a type of emission nebula that consists of an expanding, glowing shell of ionized gas ejected from red giant stars("dying star") at the end of the life.
composed of hydrogen, carbon, oxygen, and neon ions. (Esa/Hubble, nd.) Planetary nebulae usually have relatively high oxygen emission, often making planetary nebulae appear blue-green in natural color (Nichols, 2013).

5 Supernova Remnants SR is the expanding shell of gas and dust formed after a massive star explodes, releasing a
tremendous amount of energy. They play a significant role in galactic evolution and prov insights into the life cycles of massive stars, heavy element dispersal, and the impact of supernova explosions (SUT, nd.).

Good projects

Senior Honorable Mention RI/1
OUR GALAXY SHOULD HAVE THE CONDITIONS NECESSARY FOR LIFE.

High rate of cosmic planet formation

WHY HAVEN'T WE DETECTED ANY ADVANCED EXTRATERRESTRIALS?

WHAT'S THE SIGNIFICANCE OF THE FERMI PARADOX?

3. Observation Round

Practical

Practical

- Section 1 and 2 were generally the same,
- The main difference maker is section 3
- Some teams were smart enough to spam stars in the last 15 mins

Theory

- Teams were split into 2 to prevent solo carrying

Theory Q1 Cloze Passage

Two teams got full marks, but their other half did not get full

Theory Q1 Cloze Passage

AstroChalueson zoos
Com Pome 1 A mo...

Only the full marks team got this correct. Val should try finding M22 next time, can be seen Singapore on a good clear sky

Theory Q2 Finder Charts

3 teams managed to find
2 of them from the same school
Please have a drawing that can be read easily >.<

More practice is needed

Theory Q2 Finder Charts

Always use a finder!!!
Count number of FOVs!!!

Theory Q2 Finder Charts

Where do I start and end??
What am i supposed to look out for??

Theory Q3 Equipment

Theory Q3 Equipment

Press rubber to focus?

Theory Q3 Equipment

Which is correct?

Theory Q3 Equipment

Other than the specification stated above, many specifications are not printed on the should still know them as it will affect the view seen through. Exit pupil and eye relie factors in the usability and comfort of a pair of binoculars.
4. Given a binocular that has specification of 10×50, calculate its exit pupil. [1 m$]$

Theory Q3 Equipment

Other than the specification stated above, many specifications are not printed on should still know them as it will affect the view seen through. Exit pupil and eye factors in the usability and comfort of a pair of binoculars.
4. Given a binocular that has specification of 10×50, calculate its exit pupil. [

> Exit

Other than the specification stated above, many specifications are not printed on the should still know them as it will affect the view seen through. Exit pupil and eye relief factors in the usability and comfort of a pair of binoculars.
4. Given a binocular that has specification of 10×50, calculate its exit pupil. [1 m$]$

Other than the specification stated above, many specifications are not printed on th should still know them as it will affect the view seen through. Exit pupil and eye relic factors in the usability and comfort of a pair of binoculars.
4. Given a binocular that has specification of 10×50, calculate its exit pupil. [1 m]

Weird calculations

Theory Q3 Equipment

Are your eyes glued to the binos?

Theory Q3 Equipment

Why have it there if it does not do anything

```
8. Are you being scammed by the shop owner? Explain your answer. [2 m]
    No? 1 presume is antr-fogging couting. (1 thik people re very nicl.)
not me
```

Not so nice

Theory Q3 Equipment

Theory Q4 Night Sky

Theory Q4 Night Sky

the coordinates, your mom wanted to ask for your help to locate some stuff in the night can find them using her binoculars. Initially, you wanted to reject this request, but she is souvenirs back for sou if you help her. No, I'll Just buy myself a shack. trace out the Summer Triangle in Figure 1, and label it as ST. [lm]
wing stars on Figure 1 using the stipulated letters. [2m]

6. Estimate the latitude coordinate that your parents are at using Figure 1. Give your ans veal Time:

$$
\begin{aligned}
& \text { My parents win't come hame. } \\
& \text { Were did they go }
\end{aligned}
$$

lm sorry :(

Theory Q4 Night Sky

Overall

- Top 3 are very close

4. MCQ Round

MCQ Junior

Mean: 59.7
Median: 58
Max: 130
Min: 18

MCQ Junior - Confusing??

Most blanks: Q11

11. One tropical year is the time the Sun takes to return to the same solstices or equinoxes, while the sidereal year is the time the Sun to return to the same position relative to distant stars.

Given that a sidereal year is longer than a tropical year, looking from the north ecliptic pole to the south ecliptic pole, which of the following describes the rotation of the first point of Aries and the first point of Libra on the ecliptic plane compared to distant stars?
(A) Counter-clockwise,clockwise

B Clockwise, clockwise
(C) Counter-clockwise, counter-clockwise
(D) Clockwise, counter-clockwise
(E) Both points do not move compared to distant stars

MCQ Junior - Misled...

Most Incorrects: Q40

40. From the point of view of someone on Mars, which of the following appear to be incorrect? The planets are in opposition from an Earth observer.

A Jupiter will appear larger in the night sky than on Earth due to its closer distance
(B) Earth's apparent size from Mars is larger than Mars' apparent size from Earth

C The Sun will appear brighter to an observer on Mars than on Earth due to Mars having less atmosphere
(D) Stars will appear dimmer in general to an observer on Mars
(E) More than one of the above statements are incorrect

MCQ Junior - Piece of Cake?

Most Corrects: Q28

28. Why does Mars appear red to the naked eye?

A The Martian surface is rich in iron oxides, which appear red
(B) Mars is a black body and thus emit red light by Wien's Law
(C) Widespread volcanic activity in the Tharsis Montes region emits significant amount of red light
(D) Raging wildfires on its surface emit red light
(E) Mars is not red, it only appears red due to post-processing

MCQ Senior

Mean: 54.2
Median: 49
Max: 123
Min: 12

Two of such "straight-As" sheet are found

Fun Fact: You can beat the individual average by just answering C in Senior round...

MCQ Senior - A Surprise

Most blanks (tied):
 Q16 and Q26

26. Given that an eyepiece of 15 mm focal length and Apparent Field-of-View (AFOV) of 70° is used on Telescope B. Calculate the True Field-of-View (TFOV) of the setup.0.432°
(B) 0.827°
(C) 1.43°
(D) 2.04°
(E) 2.89°

MCQ Senior - A Surprise

Most Incorrects: Q1

1. Which of the following are not one of the ways astronomers measure the Hubble's constant?

A Using the merger of two black holes or neutron stars and measuring the subsequent gravitational waves to get their relative speeds to Earth

B Using the flat rotational curve model and absolute magnitude of Active Galactic Nuclei (AGN) to get their relative speeds to Earth
(C) Using spectroscopic analysis of a distant object of known distance to determine its relative redshift to Earth
(D) Use bubbles in the CMBR and the flat universe model to determine the distance of certain Supernovae to determine its relative speed to Earth
(E) All of the above methods are valid methods of measuring Hubble's constant

MCQ Senior - A Surprise

Most Corrects: Q6

```
6. Black holes are regions of space where matter collapsed in on itself, creating a singularity. This collapse is so strong that not even light can escape the black hole's gravity. As a result, black holes are often described as being "invisible" because they do not emit any light or other radiation that we can detect
What methods do scientists use to measure the mass of "invisible" black holes?
i Direct modeling of the motions of resolved stars that are in orbit near the black hole
ii Finding them in binary systems and measuring the motion of the companion object
iii Measurement of emitted gravitational waves in black hole mergers
iv Measuring the temperature difference between the black hole's core and event horizon
(A) i and ii
(B) ii and iii
(C) i and iv
D i, ii, and iii
(E) All of the above
```


Common Pool Questions

Some questions are present in both JNR and SNR. How does the two categories compare?

JNR		
Qn No.	Corrects	Incorrects
26	23%	77%
42	39%	61%
44	27%	73%
45	49%	51%
46	24%	76%
47	48%	52%
48	35%	65%
49	62%	38%
50	33%	67%

SNR		
Qn No.	Corrects	Incorrects
25	23%	77%
32	55%	45%
34	30%	70%
36	55%	45%
37	23%	77%
38	46%	54%
39	43%	57%
40	53%	47%
41	39%	61%

47. The James Webb Space Telescope is one of the most anticipated space telescopes with an immense budget. Because it is primarily designed for near-infrared astronomy, it must be positioned at the L2
48. Unlike planets like Earth and Uranus, Jupiter does not experience significant seasonal changes. This is primarily because
(A) Jupiter is tidally locked to the Sun
(B) Jupiter moves too slowly along its orbit
(C) The axial tilt of Jupiter is negligible
(D) The weather on Jupiter is driven by tidal forces exerted by the Galilean moons
(E) The weather on Jupiter is driven by deuterium fusion within its core
(E) None of the above

6. DRQ Round

Minor Bugbear

- Annoying stapling practices

Not So Minor Bugbear

- To facilitate the marking, we requested for separate questions to be answered on separate papers...for a good reason...

```
I only just found this part of q4 myself:( 17:44 \/
Good thing that I had to enter the question part marks manually
                                    edited 17:45
I only just found this part of q4 myself :(
this is really turning out to be quite painful ah haha

\section*{- The saga continues...}

Brendan and I missed a part each which we only caught just now

ok I want to flip table alr, after checking I realised they answered part f twice in different parts of the paper

\section*{in}


\subsection*{5.1 Junior DRQ}


\section*{ALL THE BOMBS}


\section*{Statistics}

\section*{After Moderation:}

Mean: 43.60
Median: 48.44 HI: 100

AC2023 JNR DRQ Score Dist.


\section*{Score Breakdown}
- Expectation: better scores for Q1 (general astronomy) and Q5 (practical astronomy) than Q2/Q3/Q4
- Reality: most participants can do some math (Q3) but
 not astronomy :(

\section*{Q1}

A Job Interview NPZ


\section*{Rationale}
- Easy-to-score general astronomy question
- Provide a score buffer for the inevitable slaughter in the later questions

Reality:
- Participants don't have a strong grasp on general astronomy :(

\section*{Statistics}

\section*{JNR DRQ 1 Score Distribution}

Mean: 7.26
Median: 7.5
Hi: 15.5

```

ic) Yes. Acconding tetc text on page 3 of 27 of tle Astr-challenge 20
Junior Team Round paper, written jointly by th NJtional Uniersity of
singapore Asforomical Society and tle Nanyang Techn-logical
Uniersity Astionomical Society," for 2bout an bour, the intervievers
Jck abont vamousotler [telescope-]related questions. To his surpris
Jack folt that be was able to anouer most of tle questions." Assumin
number of interviev questions anshered plays a significant part in tle
aceptance process, which is a reasonable assumption, Liven the whsit
that applicants shand bring to the team "[k]nonled ge Lof astonor
"be familiar mth telescopes and ofler astronomical inftrunents"
Jack demonstrated quite a bit of knowledge dout tle subjeut, it

```
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
 avwoing ow queskens for chacuse m row", while the "nothe". This depits Tectithaten on the distanco afficming action of nodding rhowsitereir volidetemen the Jock wued to do so thank you once a gon trom corlly all the vis Jod. In odderiven, an \\
 \\
 villigmes for Jock bo sthey on the wlad wath ther. Hence, the roure sthangly that theintersivies are vily pleoud wath Jack. From this, we can concluse that the hove a possube impresotion of Jack and hence accepe him oor the job, allowing Jack Most importantly, he answered the way we did which is definitely correct. In addrion, from our contessual knowkdje, Jack was oble to anigree mat \\
 \\
 Ruffle Instusta Solany oud Aswoany. Club Choirmen, whith has a coningt Acrochalloge as evilancet by firumphe in \(2018,2019,2020\) and 2022 . In aldomes,
\end{tabular} \\
\hline
\end{tabular}

How are participants finding the time to write long essays for a free mark question???

An equally valid way to get your free marks



Q2

\section*{Asteroid-Centered Direct Redirection Quest}

\author{
Brendan
}

\section*{Overall Intent}
- Introduction to popular Asteroid Redirection techniques
- Spans multiple topics in Astrophysics
- More heavy on Celestial Mechanics
- Orbital Transfers
- Orbital Parameters
- Momentum Conservation
- Touches slightly on Stellar Physics
- Momentum of Light

\section*{Statistics}

\section*{JNR DRQ 2 Score Distribution}

Mean: 6.37
Median: 5.5
Hi: 16


\section*{Statistics}

\section*{Removing NIL Attempts}

Mean: 7.12
Median: 6
Hi: 16


\section*{Summary}
- Most got the "give-away" questions
- Only a few attempted the harder questions
- Most saw the integral and then panicked.

```

(c).
I have no idea:l

```

Next time, just write something.

\section*{Not Reading the Question}


What was "U"?
\[
\begin{aligned}
& \Delta V \approx-\frac{2 M u}{M} \\
& V \approx-\frac{2(1000 \mathrm{~kg})\left(u=1.660539 \times 10^{-27} \mathrm{~kg}\right)}{2 \times 10^{15} \mathrm{~kg}} \text { Whot?!}
\end{aligned}
\]

Atomic mass unit \(u=1.660539 \times 10^{-27} \mathrm{~kg}\)
\(m\) and \(M\) are the masses of the probe and the asteroid respectively, with \(u\) being the orbital velocity of the probe with respect to the Sun at the point of impact.

\section*{Not Reading the Question}
as a single entity. We can then show that the change in the asteroid's velocity is roughly given by:
\[
\begin{equation*}
\Delta V \approx-\frac{2 m u}{M} \tag{3}
\end{equation*}
\]

What was "U" again?

We ignored the the relative velocity of the satellite with respect to the asteroid. In reality, since the the velocity int is almost equal to the oo velocity of

\section*{Clarification}

You might be wondering where the negative sign came from.

\section*{A sneak peek into an older draft...}

For convention, we will use \(m\) and \(M\) as the masses of Messiah and Alvarez respectively, with \(u\) being the orbital velocity of Messiah with respect to the Sun at the point of impact.

Then, it is a matter of applying the conservation of angular momentum:
\[
m(-u) r+M u r=(M+m)(u+\Delta V) r
\]

We can simplify by cancelling like terms and get:
\[
-2 m u=(M+m) \Delta V
\]
from which we get our desired result by taking that \(m \ll M\) :
\[
\Delta V=\frac{-2 m u}{M+m} \approx \frac{-2 m u}{M}
\]

Math Errors

Random Math Errors
\[
\begin{aligned}
\therefore|u| & =2.96 \times 10^{1919} \mathrm{~J} \\
& =2.96 \times 10^{10} \mathrm{~J}
\end{aligned}
\]
(b)
\[
\begin{aligned}
\omega_{\text {where }} & =\frac{2 \pi}{\text { Tenth }} \\
& =0.00000082666 \mathrm{math} / \mathrm{m} / \mathrm{s} \\
v_{b} & =r_{e} \omega_{b} \\
& =12.369 .65 \mathrm{~m} / \mathrm{s}_{x}
\end{aligned}
\]
\[
U=-\frac{3 G M^{2}}{5 R}
\]
\[
2.966151111 \times 10^{16}
\]
a) \(\mathrm{f}\{234\) Cell tigntylars

What?! Orbital Period \(\quad\) ff2341e1

\section*{Physics Errors}

Forgetting what " \(G\) " is


GG


\section*{"Rederiving" the Vis-Viva equation}
\[
\begin{aligned}
& -\frac{G M m}{R}-\left(-\frac{G M m}{1.6 R}\right) \\
& -G M m\left(\frac{1}{R}-\frac{1}{1.6 R}\right) \\
& -\Delta G P E=\Delta K E \text { as } G P E_{\text {Stat }}+K E \text { sat }=G P E_{\text {end }}+K E E_{\text {end }} \\
& \operatorname{GMnh}\left(\frac{1}{R}-\frac{1}{1.6 R}\right): \frac{1}{2} m v_{c r a}^{2}-\frac{1}{2} m v_{\text {Sca }}{ }^{2} \\
& 2 G M\left(\frac{1}{R}-\frac{1}{1.6 R}\right)=v_{\text {end }}{ }^{2}-v_{\text {stat }}{ }^{2}
\end{aligned}
\]


\section*{Part (B)}

\section*{Using the Vis-Viva Wrongly}

\(v=6.370 \times 10^{6} \times \omega\)
\(v=6.370 \times 10^{6} \times 1.99 \times 10^{-7}\)
\(v=1.26763 \mathrm{~ms}^{-1} \quad\) Accidundly \(\quad\) Jed \(R Q\)
\[
v_{E}{ }^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right)
\]
\[
\begin{aligned}
& =\left(6.67384_{\times 10^{11}}^{-1}\right)\left(1.989 \times 10^{30}\right)(\underbrace{\left(\frac{2}{6370 \times 0^{6}}\right.}_{\text {not supponed }}-\frac{1}{1496 \times 10^{11}}) \\
& =4.167636247 \times 10^{13}
\end{aligned}
\]

\section*{Part (B)}

What is a Vector?


\section*{Part (B)}

Forgetting to account for direction.

\[
\begin{gathered}
=257355306629786 \mathrm{~ms} / 1 \\
\Delta v=34929 \mathrm{~ms}^{-1}-29786 \mathrm{~ms}^{-1}=5142.5 \mathrm{~ms}^{-1}
\end{gathered}
\]
\[
\begin{aligned}
|\Delta V| & =9087.68 \mathrm{~m} / \mathrm{s} 5141.55 \mathrm{~m} / \mathrm{s}(2 d . p .) \\
& =9090 \mathrm{mts}(35 . f) 5140 \mathrm{~m} / \mathrm{s}(3 \mathrm{f} . \mathrm{f}) \times \begin{array}{c}
\text { Forgot to account for } \\
\text { dir }
\end{array} \\
& 2 \mathrm{mu}
\end{aligned}
\]

\section*{Part (C)}
(c) For a medium-sized probe of \(m=1000 \mathrm{~kg}\) and using the mass of the asteroid as \(2 \times 10^{15} \mathrm{~kg}\), show that the change in velocity is \(\Delta V=2.07 \times 10^{-8} \mathbf{m} / \mathrm{s}\).

(c) \(\Delta V=-\frac{2 m u}{M}\)
votesru Com Q \(2(C) \Delta \sqrt{-2,07 \times 10}\) o8m/sx You cannot joust
\[
\begin{aligned}
& =\frac{-2 \times 1000 \times 20694.29}{2 \times 10^{15}} \text { Wow! } \\
& =-0.00000010297 \text { backwards } \\
& =-0.00000002069 \mathrm{~m} / \mathrm{s} \\
& =2.069 \times 10^{-8} \mathrm{~m} / \mathrm{s} \\
& \approx 2.07 \times 10^{-8} \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

Some argued that gravitational effects will increase the impact

So if we were to account for it and simulate it:

```


Get the difference positional vector

dx = xP - xA
dy = yP - yA
thetaD = math.atan2(dy, dx)

Get the respective forces

FA = -attraction(M_Alvarez, M_SUN, norm(xA, yA))
FP = -attraction(M_Probe, M_SUN, norm(xP, yP))
FCross = attraction(M_Alvarez, M_Probe, norm(dx, dy))
vf}=20787\mp@subsup{\textrm{ms}}{}{-1

```
    This constitutes a \(0.5 \%\)
    increase in velocity.

How many nukes do we have?

We have a lot of nuclear weapons in the world. As of early-2023, the world has around 13000 nukes[?].
```

(t).
100-kilotons }=4.184\times1\mp@subsup{0}{}{12}\times1\mp@subsup{0}{}{2
=4.184\times1\mp@subsup{0}{}{14}\textrm{J}}\quad\mathrm{ this is for only one nuke!

```

\section*{Part (G)}

If you had been paying close attention...
(g) List two other possible (physical) pitfalls with this plan of using nukes, or other high-yield explosives, in saving the Earth from the asteroid impact.


Free 2 marks! Average was 0.895...

\section*{Part (G)}

\section*{Mitosis}

Still...
 atonosplere they wolld simply he dissolved in the atmesphecre. receive the impact. Them uoud hare some nucle

\section*{Solubility Rules}

Mnemonic Tricks

Always Soluble NAG SAG
Nitrates \(\left(\mathrm{NO}_{3}{ }^{-}\right)\)
Acetates \(\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)\)
Group 1 ( \(\mathrm{Li}^{+}, \mathrm{Na}^{+}\), etc.)

Sulfates \(\left(\mathrm{SO}_{4}{ }^{2-}\right)\)
Ammonium \(\left(\mathrm{NH}_{4}^{+}\right)\)
Group 17 ( \(\mathrm{F} ; \mathrm{Cl}\); etc.)

Exceptions
PMS and Castro Bear
P ( \(\mathrm{Pb}^{2+}\), lead)
M (mercury, \(\mathrm{Hg}^{2+}\) )
\(\mathbf{S}\) (silver, \(\mathrm{Ag}^{+}\))
\(\mathrm{Ca}^{2+}\)
Sr
\(B a^{2}\)

\section*{Q3}

\section*{Exoplanets and Exo-Life} Choon Hean

\section*{Statistics}

Mean: 8.68
Median: 7.5
Hi: 18


\section*{Summary}
- Test some concepts in exoplanet discovery/spectroscopy
- Some calculations with given formulae
- Relatively well-done overall (compared to the rest of the questions)
- Some careless mistakes in calculations :(
- Remember to check your work!

Unfortunate Miscalculations
d) Seminajor mors of rivet \(=1.44 \times 7.285 \times 10^{\text {" }}\) Period of react \(=\sqrt{\frac{4 \pi^{2}}{\left(\text { Mass }_{\text {rhet }}+\left(M_{\text {ours star }}\right)\right.}\left(1.44+7.785 \times 10^{\circ 1}\right)^{3}}\)
2.5 Lugs
\[
1.989 \times 10^{30}
\]

0 .bite phase \(\sim 2.5\) dags \(\times\). 2.5 days to orbit a sun-sized star?
A planet fut her than Jupiter takes 2.5 days to orbit a sun-sizal star?
Astronomers look for exoplaets orbiting these speeral castes since the terreratues of exosinet) within type Foo M de is the range to enter that planet, orbiting these stars do not face high enough radiation to ensue the

When you give up
albedo is this stupid thing we have in Genshin Impact, and having higher al bedo ma god very angry, so he blasts the planet with las


\section*{Q4}

\title{
Red Spiral Galaxies at High Noon
}

\author{
Janani, Frederik, Ken Rui
}

\section*{Rationale}
- Introduce a recent JWST research paper result
- Guide participants through understanding the methods of the paper, the results, and its implications
- Test conceptual understanding of star formation, galaxies, and spectroscopy
- As a result, question has long background explanatory text
- Surely people know how to read, right?

\section*{QM Postmortem (Errata)}
- JWST orbits at L2 (true fact)
- But diagram shows L2 between Earth and the Sun
- What does this mean?


Figure 14: \(\Lambda\) diagram showing the position of the lagrange points in the Earth-Sun frame of reference

\section*{JWST, SOHO's successor}
- Nobody raised this up during the DRQ btw
- Full marks given for calculations based on diagram instead of the actual L2 point
- Lesson Learnt: Don't trust everything you find on google

\section*{Statistics}

Mean: 6.16
Median: 5.5
Hi: 16.5


\section*{Summary}
1. Many appear shocked by the amount of graphs when checking the paper
a. Some realised afterwards that it is actually mostly conceptual questions (graphs are your friend!)
1. I get the impression that you are skipping all the explanatory text the QMs spent hours writing ;_;

Seems to be a persistent theme throughout the DRQ round


\section*{Surely people will read the text before the question?}

When we observe the spectra of elliptical galaxies such as in Figure 16, we find that they tend to not exhibit strong emission lines like in most spiral galaxies. Instead, we mostly see the 'reverse'; strong characteristic dips corresponding to known elements which can also be used to measure redshift. To understand this, it might be helpful to recall how the spectrum of a star looks like (Figure 17).
(d) Explain how are the absorption lines of a galactic spectra mainly produced.

Starlight has distinct absorption lines!! ->


An unfortunately common answer
1) Clouds of dust and gas that obscure Starlight in galaxies.
 is assorted on the gas, causing th assorption limes, \(\qquad\)


It is called "speed of light" for a reason...

Q \(4(b)\) Infrared is fastest form of light

\section*{Another casualty of poor reading comprehension...}
(i) Based on what was discussed thus far, state the 3 factors that could plausibly explain the red appearance of the JWST galaxies. These factors need to be accounted for or be included as parameters in the model fitting process.

\section*{Solution:}
1) Redshift 2) Presence of dust 3) Old stellar population

All of these factors were painstakingly introduced and explained as you progress throughout this question!

\section*{Exemplary Answer}

Correct binomial expansion and approximation for L2 distance in terms of \(m, M\) and R_earth

No extra credit though :(

This is actually why we only require you to write the correct equality without solving



\section*{Q5}

\section*{Arabic Astronomy Kia Yee}

\section*{Statistics}

Removing NIL Attempts
Mean: 6.66
Median: 3.25
Hi: 19.25

\section*{JNR DRQ 5 Score Distribution}


\section*{Overall comments}
- Performance for this question was highly varied
- Average score for this question was 6.66 marks, which lies in the middle of the Junior Team round Questions
- However, this question had a median of only 3.25 marks, which is the lowest median among all Junior Team Round Questions.
- My guess is that many teams were shocked by all the Arabic names and unfamiliar constellations that appeared...
- Many of our modern star names however are transliterations of these Arabic names, so reading those names out aloud would probably have clued you in to the answer.

\section*{The best scoring teams came well prepared...}


\section*{Case in point}
- Out of this team's perfect star chart analysis was this errant marking.
- I thought this couldn't possibly be correct so I went to check it up.
- Thank you NYGH1 for educating me about the Antennae Galaxies!


\title{
Some interesting attempts
}

Thank you for trying :D

What "camels" could Aldebaran be herding?
- Idea of the question: what objects could stargazers in the \(8^{\text {th }}\) Century observe?

f) Onion retula.??
f) Pillars of creation \(7!?\)

\section*{Please read instructions}
- Part VI states that you were supposed to attempt it on the next page
```

Part VI Star Chart Analysis
A 1-page sized replica of Figure 23 is attached on the next page. You are to mark your answers on
the image directly. Remember to detach the page and staple it to your answer script as part of your
submission.

```
- A team however decided to attempt it on the wrong page...

\section*{Please read instructions}
－Clearly the team realized their mistake at the last moment，because someone wrote this．．．

Page 25 of 27
我不知道，给免费分，同情我加！！
Translation：I didn＇t know，please give me free marks and pity me！！
－Marker＇s first thought ：Saya tak tahu cina？！？
Translation：I don＇t know Chinese？！？

\section*{Please read instructions}
- Out of kindness, the marker did try to see if any marks could be awarded
- Thank you for the attempt at drawing a Big Dipper

The Flying Vulture
an-nasr at-ta'ir

\title{
Moral of the story
}

世界上没有免费的东西．．．
Translation：There are no free things in this world．．．

\section*{More seriously: do read instructions!}

Thanks for trying, and I hope you learnt something from this question!

\subsection*{5.2 Senior DRQ}


\subsection*{5.2 Senior DRQ}

AC Trauma Support Network


\section*{How to fumble the bag 101}
1. See unfamiliar* topics
2. mfw not written on your cheat sheet
3. TRY NOT TO PANIC!
4. ...
5. Start laughing like a maniac in the middle of the LT

*Note: unfamiliar doesn't always mean difficult!

\section*{Statistics}

Raw Scores
Mean: 28
Median: 24
HI: 72
AC2023 SNR DRQ Score Dist.


\section*{Score Breakdown}



\section*{Q1}

\section*{Wishing Upon a Star}

Kaiwen

\section*{Summary}
- Expectation: Friendly conceptual stargazing + solar system question to ease people in.
- Fun fact: this question was originally meant for the juniors
- Reality:


\section*{Statistics}

Removing NIL Attempts
Mean: 5.3
Median: 4.5
Hi: 13

(g) Why do meteor showers originate from a radiant point? (Hint: Think about train tracks)
- Expectation: surely people understand how train tracks work?

```

 Als grod visibility.
    ```
(b) Most meteorites are believed to originate from the early solar system. Given their origins, explain how the three types of meteorites might be formed during the early solar system.
- Expectation: surely people know the history of the solar system?
CD) Stony mete orites: are formed ahem from the collision of stars Iron meteorites: are formed from when major stars become supernova.

The early solar system must be a hectic place...


When you give up - and season 1st cour
j) Every 33 years, Saituma sensei travels to \& the coonids and causes a supernova at one of the comets, releasing a galaxy-level explosion, causing a spike in ZHR.

\section*{When you give up - 2nd season 2nd cour}


\section*{Remedy}
- Read popular astronomy/stargazing articles!



\section*{Q2}

Twinkle Twinkle Little Star in the Great Nebula

\author{
Jerry
}

\section*{Statistics}

Removing NIL Attempts
Mean: 6.5
Median: 4.5
Hi: 19

SNR DRQ Q2 Score Distribution


\section*{Summary}
- (Surprisingly) Most well-done question
- Many saw through the first integral as a bluff (it's just the Stefan-Boltzmann Law!)
- The second integral was not a bluff though, so most people died
(g) Write down the integral for the total time \(\tau\) for a sound wave to travel the diameter of
a star, solve it and show that the period of oscillation is given by:
\[
\tau=\sqrt{\frac{6 \pi}{\gamma G \rho}}
\]

This will come in handy:
- Takeaway(?): Most SNR participants are still more comfortable with math than astronomy :(

\section*{Quick Note: Don't underestimate your marker}

- One team tried to sneak in a random factor of 4 so that their final derivation matches the answer.

When you give up - OVA
(ع) \(p(r)\) is smaller the langer \(m(r)\) is
(d) \(\frac{d P(-)}{d r}=\) God Question. Good answer

\section*{Q3}

\section*{Escape from the Solar System \\ Golf}


\section*{Statistics}

\section*{Removing NIL Attempts}

Mean: 4.1
Median: 2.5
Hi: 13


Live replay of AC senior participants reactions
(a) Given the above simplifying assumptions, calculate the orbital velocities of both Jupiter and Earth. Express your answers in \(\mathrm{km} \mathrm{s}^{-1}\).
(b) How long will it take before Saitama is able to see Jupiter at opposition again?
(c) By considering energy and momentum conservation, show that \(V_{E_{f}} \approx 2 V_{J}+V_{E}\).
(d) Given that \(V_{E_{f}} \approx 2 V_{J}+V_{E}\) in the one-dimensional case, derive the expression for \(V_{E_{f}}\) for the two-dimensional case in terms of \(\theta, M_{J}\) and \(M_{E}\).


This relatively simple derivation should gives us some intuition boost from slingshotting around Jupiter. However, notice that specified angle at which the earth approaches Jupiter, \(\theta\), this do the earth (imagine displacing the earth while leaving its velocity result in a different trajectory, but our derivations do not take the symmetry requirement, we have already made a particular i describe the trajectory of Earth, we need a few more ingredient


(e) Express the angular momentum \(L\) and total energy \(E\) of the small mass \(m\) in terms of the initial speed of the small body \(v_{0}\) and the impact parameter \(b\).
(f) Thus, express the constant \(C\) and eccentricity \(e\) as given by (6) in terms of the mass of the large body \(M, v_{0}\) and \(b\).
(g) From equations (5) and (6), derive the expression for \(r_{m}\), the closest distand mass m and mass M as mass m moves along its trajectory, in terms of \(M, v_{0}\)
\[
\phi=2 \theta_{\max }-\pi
\]
(h) Thus, derive the expression for the deflection angle \(\phi\) in terms of \(v_{0}, b\), and \(M\).


\section*{Important PSA}
- This is frankly a very difficult question
- Don't be disheartened if you couldn't do it. . it is not really an astronomy question either

Lvl 1: Plug in formulae and press calculator

Lvl 2: COM/COE
(A Ivl Physics)

Lvl 3: Parametrizing the trajectory of an object
(Uni Phys/Eng)

\section*{Derivations can be challenging}


Most rigorous physics derivation

\section*{How to spot calculation mistakes}
- Develop physical intuition (takes time)
- Check order of magnitudes
- (there is an estimation round in finals for a reason!)

\section*{How hot can a planet be?}
- \(T=5389.83 \mathrm{~K}\) (too many s.f.!)
- Surface of the Sun: 5772 K

\section*{How hot can a planet be? \#2}
- \(\mathrm{T}=215935 \mathrm{~K}\) (40 times hotter than the surface of the sun!)
- The culprit: Orbital radius calculated to be \(4 \times 10^{\wedge} 5\) metres
- Radius of the Sun: \(7 \times 10^{\wedge} 5\) kilometres



Contestants from the Junior DRQ


\section*{Is this our highest bidder?}
- \(1 \times 10^{\wedge 12 ~ K e l v i n s ~}\)
\[
\begin{aligned}
& \text { Chat IV: Habitable Zorn } \\
& \text { (j) } 1000000000000^{\circ} \mathrm{C} \\
& \text { al }
\end{aligned}
\]

\section*{Throwback Time! (see AC2016 PM)}


\title{
Answ foehasamaril
}

CHALLENGER APPROACHING

\section*{Our grand winning bid:}

- Temperature is \(10^{\wedge} 33\) Joules?
- This actually makes sense in plasma physics for electron temperature!
- Let's do a conversion:
- \(1 \mathrm{eV}=11605\) Kelvin
- \(1 \mathrm{~J}=6.2 \times 10^{\wedge} 18 \mathrm{eV}\)
- \(10^{\wedge} 33 \mathrm{~J}=1.1 \times 10^{\wedge} 55\) Kelvin

\section*{How hot is \(10^{\wedge} 55\) Kelvin?}
- Temperature at the start of the big bang: \(10^{\wedge 10}\) Kelvin
- \(=10^{\wedge} 45\) big bangs
- Lesson: Units matter! (a lot)


?? What are you drawing

Q4
An Afternoon at the Sundial Garden

Ken Ri

\section*{Rationale}
- Historical role of astronomy in timekeeping
- Focus on concepts rather than math
- Filter those who can do physics but not astronomy

\section*{Reality:}
- Everyone got filtered

\section*{PRAISE THE StHNDIAL}


\section*{Statistics}

Removing NIL Attempts
Mean: 4.32
Median: 4
Hi: 11.5

SNR DRQ Q4 Score Distribution


\section*{Killer Question (most zeros)}

It should be possible to construct the hour lines on a nodus-based sundial such that it automatically compensates for the equation of time. This is done with a curved hour line that is ahead or behind the original straight hour line at points corresponding to different solar declinations, with the time difference given by the equation of time.
(1) Describe the shape of the hour lines if such a correction was to be applied. You may supplement your description with a sketch if needed.
*Don't worry, this was meant to be difficult

\section*{Tasty Dumplings}


\section*{Your logic:}
1. Sundial hour lines are like clock faces
2. Equation of time is curvy
3. Make hour lines curvy

You're on the right track, but the whole point of the question is to debunk premise 1!


When you give up - Final Season
\(-\frac{4}{3} \pi r^{3} \rho \times \frac{G p}{r}=\)
i) my pen <ो ruuniy ont of ir:i
\(-\frac{4}{3} \pi r^{2} G p^{2}=\) - see.
g) \(I_{1}\) is just es it is, as resin. Power it noture.
yes.
(i) Snare. Super Mario Bros Movie.

Peaches, peaches, peaches, peaches, peaches KZ
I love yountm.
Peach, understand. I'mma love you to the very end.
A hopeless romantic all ny life.
Surrounded by couples all the fine.
I goes s I shicitl face it a sign.
OO wa OO wal, OO wa OOmaca wish I'd
I'm feeling 'onely, oh IV X find a lover that could hold wee.

Now I'm crying in mi y rom.
So sceptical of love, (say what you naut
Least insane Princess Peach simp


But still I wart it wove, curs, ...
I gave a second chare to caps

\section*{DAQ (Senior)}

\section*{Data Analysis Question}

Benjamin


\section*{Rationale}
- Introduction to a few tools and the data analysis process of Astrophysics-related research.
- Observation \(\rightarrow\) Data Collection and Processing \(\rightarrow\) Data Analysis \(\rightarrow\) Data Visualization \(\rightarrow\) Inference Making

\section*{Statistics}

Removing NIL Attempts
Mean: 8.84
Median: 8.5
Hi: 18


Killer Questions were 1a and 2e

\section*{A word from your marker when we asked him how were the submissions...}


Teams that spent time and put in effort did significantly better!

\section*{General Complaints}
- Some did not follow instructions clearly...
- Did not save .fits file as rgb image
- Shallow research done. Evident in responses
- Referencing with no evidence provided is not substantial.
- Those that did research performed vastly better overall.
- Answers were long-winded and missed the mark
- Random math taking place due to panic.
- There's no time limit!

\section*{Exemplary Case}
- Excellent Research showcase
slots for the lower image values than the higher image values (C. Patterson, 2011) Irns highlights low luminosity features in the image that may not be noticeable with a linear scale. It helps to accentuate faint maxima, where there is a bright source in the field. (SAO, n.d.)
1. "Explore LAT Data"- SLAC Stanford University (Published by Chuck Patterson-03/02/2011)[link]http://vizier.u-strasbg.fr/doc/man/saoimage.scale.htx
2. "Scaling from image pixel value to displayed colours in SAOimage"- Smithsonian Astrophysical Observatory (SAO) [link] http://tdc-www.harvard.edu/software/saoimage/saoimage.scale.html

\section*{- Good citations but wrong use case}
```

Cen-X3 mass = 1.21 Solar Masses
Companion star mass =20.5 Solar Masses
(Ref. Naik, Sachindra; Paul, Biswajit; Ali, Zulfikar (August 2011)) its ok
(Sorry, we could not figure the last 3 out despite our best efforts (%)

```

\section*{Exemplary Case}
- Well-labeled Diagrams



\section*{Negative Example...}


Surely AC participants are young enough to know how to export image files??

\section*{Exemplary Case}
- Using multiple points to improve accuracy (thinking like a scientist!)


Random fails

\section*{Random Calculations}

\section*{\(M 1+M 2=a^{3} / p^{2}\)}

Mass of binary system \(=a^{3}+p^{2}=0.079277797^{3}+0.005561644^{2}=5.29190388 \times 10^{-4} \mathrm{AU}\) \(\mathrm{MP}^{2}=\mathrm{a}^{3}\)
Mass \(=\mathrm{a}^{3 *} \mathrm{p}^{-2}=0.079277797^{3} \times 0.005561644^{-2}=16.10824949 \mathrm{AU}[1] \quad\) ???
where did you get this number? \(365.25 \times 86400 \mathrm{~km}=631152000 \mathrm{~km}\)

\section*{Not Calculating, just Googling}

10 light years (Google gives the radius of Cassiopeia \(A\) to be 5 light years)
(h) What is the mass of the Cen-X3 and its companion star respectively?
(Wiktionary: https://academic.oup.com/mnras/article/307/2/357/11043072login=false)
Mass of Cen-X3: \(1.21 \pm 0.21 \mathrm{M}\)
Mass of companion star: \(20.5 \pm 0.7 \mathrm{M}\)

\section*{Forgetting Relativity}

\section*{Thus, Maximum radial velocity of Cen-X3,}
\[
\begin{aligned}
V_{r} & =c \times \frac{\lambda_{\max }-\lambda_{\text {rest }}}{\lambda_{\text {rest }}}, \text { where } c \text { is the speed of light and } \lambda=\frac{c}{f} \\
& =2.738209 \times 10^{12} \mathrm{~ms}^{-1}=2.74 \times 10^{12} \mathrm{~ms}^{-1}(3 \mathrm{~s} . f)
\end{aligned}
\]

These are 9150c!


Juniors: Watch this
\[
\begin{aligned}
N_{\oplus}= & 29788.20164 \mathrm{~m} / \mathrm{s} \\
V_{A}= & {\left[1.989 \times 10^{30}\left(6.67384 \times 10^{-11}\right.\right.} \\
= & 1,206,32.8961 \mathrm{~m} / \mathrm{s} \quad B R U H \\
& \Delta V=(1,206,328,961-887,336
\end{aligned}
\]
 Up: 8 minutes

\section*{Seniors: ok but hold on}


\section*{To quote the 2017 postmortem...}

OBSERVABLE UNIVERSE

If you get answers like this, the universe is screaming at you to Maicerk Vour work.

\section*{That's all folks! - AC2023 QMs}```

