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Question 1 Wish upon a shooting star

Part I Wait, it’s all just rocks?
Is a shooting star really a star flying right above our heads? Well thank god no. If a star were to be
within our Earth’s atmosphere you wouldn’t be alive to be doing this question now.

Then what is a shooting star? After you have confidently eliminated the possibility of what you are seeing
being just a plane or a satellite, you might be looking at a meteor.

You may have heard of the terms meteorite, meteor and meteoroid and wondered are they just the same
thing? And you’d be right (sort of). They refer to the same thing just under different conditions. A
meteoroid is defined to be a rock in space within the size of 30 micrometers and 1 meter in diameter.
A meteoroid becomes visible as a meteor when it intersects with the Earth’s atmosphere at night. The
ram pressure due to the collision between the meteoroid and the atmosphere heats up and ionises the
material in the meteoroid, which glows as a result. If the meteoroid has the right trajectory and does
not completely burn up in the atmosphere, it reaches the Earth’s surface and becomes a meteorite. The
meteorite may also form a crater due to the impact with the Earth’s surface.

(a) Considering that the Earth is much bigger and older than the Moon, why do we observe
more craters on the Moon? [1]

There are generally 3 main types of meteorites: stony, iron and stony-iron meteorites.

(a) (b) (c)

Figure 1: The three main types of meteorites: (a) stony (b) iron (c) stony-iron

Stony meteorites account for most meteorites, about 94%. These meteorites contain silicate material.
Iron meteorites account for about 5% of meteorites. These meteorites are composed of iron-nickel alloys.
Stony-iron meteorites account for the last 1% and are a mixture of both silicate material and iron-nickel
alloys.

(b) Most meteorites are believed to originate from the early solar system. Given their
origins, explain how the three types of meteorites might be formed during the early
solar system. [3]

(c) Why are you more likely to observe a meteor after local midnight? [2]

Part II Rock + Ice = Comet
If your shooting star remains at the same spot for a while then maybe you are looking at a comet instead.

A comet is a solar system body made out of rock and ice. When a comet moves close to the Sun in the
comet’s orbit, volatile materials such as ice in the comet vaporises due to solar radiation and wind. This is
known as outgassing. Out-gassing also releases solid material (aka dust). The vaporised volatile material
gets ionised by ultraviolet radiation from the Sun and emits faint blue light to form a visible gas (or ion)
tail. The gas tail is highly influenced by the direction of solar wind. The dust forms a dust tail that
becomes visible as the dust scatters light from the Sun. The dust then settles into its own orbit around
the Sun. However, not all comets have 2 tails. A comet may have a dust tail, a gas tail, both tails or no
tail depending on its composition and distance from the Sun.
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Figure 2: An artist’s impression of a comet

(d) With reference to 2, state and explain which is the gas tail and which is the dust tail. [3]

With all the outgassing and releasing of dust, a comet naturally has a finite lifespan. Assuming the comet
does not get ejected out of the solar system or experience breaking up or collision with other solar system
objects, it will eventually become an extinct comet once all the volatile material evaporates. The comet
will then become just a rock that resembles an asteroid.

But since we still see comets today, there must be a source for all these comets.

Comets can generally be classified by their orbital period. One group of comets is known as long-period
comets. These comets have periods of more than 200 years and have been observed at almost every
inclination to the Earth’s orbital plane. The designation of “C/” is used to indicate long-period comets.

The other group of comets is (of course) known as short-period comets. These comets have periods of less
than 200 years. Notably, a subset of this group, the Jupiter family of comets, have periods of less than
20 years. These short-period comets have been observed to have little orbital inclination relative to the
Earth’s orbital plane. The designation of “P/” is used to indicate short-period comets.

Extra: “D/” is used to refer to dead or destroyed comets :(

Figure 3: A diagram of a long-period comet orbit
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(e) Suggest a possible source for long-period comets and another source for short-period
comets. Explain why. [3]

If you want to check how visible a comet is, you can do so with the aid of a diagram known as the
brightness curve of a comet (4), which plots the apparent magnitude of the comet over time as the comet
moves ahead in its trajectory around the sun. These plots can either real-time reports based on actual
astronomical observations or forecasts based on theoretical comet models. We usually expect the peak
brightness of a comet to happen near its closest approach to the sun at perihelion.

Figure 4: Brightness curve of comet C/2021 A1 Leonard

(f) Is it always the best time to view a comet when it is at peak brightness? Why or why
not? [2]

Part III It’s raining stars
If you see stars raining from the sky, don’t panic. Chances are it’s not the end of the world and you might
be looking at a meteor shower.

A meteor shower is an event where many meteors appear to originate from 1 point in the sky. Remember
how a comet releases dust during outgassing as it travels near the sun? The dust released mostly stays on
the orbital path of the comet. If the Earth’s orbital path intersects with the comet’s orbital path, once a
year the Earth will be ‘spinning through’ this cloud of dust. This causes many meteoroids to be present
in the Earth’s atmosphere at the same time, resulting in a meteor shower.

Figure 5: Trajectory of meteoroids in the comet’s wake
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All meteor showers originate from a radiant point. This means that if we extend the lines of the visible
meteors, the lines will sort of connect at a small region as shown below. Meteor showers are also named
based on their radiant point. For example, the Perseids meteor shower is named as such because its
radiant point is in the constellation Perseus.

Figure 6: Meteors appear to origin radially from a single point in the sky

(g) Why do meteor showers originate from a radiant point? (Hint: Think about train
tracks) [2]

Halley’s comet has an orbital inclination of 162 degrees to Earth’s orbit (meaning it is inclined 18 degrees
relative to the plane of the Earth’s orbit, and is orbiting in the opposite direction). Interestingly, both
the Eta Aquarids and Orionids meteor showers originate from Halley’s comet, and they occur roughly 6
months apart from each other.

(h) Given the orbital inclination of Halley’s comet, explain why the Eta Aquarids and
Orionids occur roughly six months apart. [1]

There are many meteor showers, but why have we mostly heard of a few of them such as the Geminids or
the Perseids? This might have to do with how many meteors can be seen during the meteor shower. More
meteors would make for a more spectacular meteor shower.

A way to quantify this ‘niceness’ of meteor shower is known as the Zenithal Hourly Rate (ZHR). Since the
peak of a meteor shower is generally taken to be when the radiant point is near the meridian, ZHR refers
to the number of meteors ‘crossing’ the zenith in one hour of peak activity. Hence comets that left behind
a denser cloud of dust would result in a meteor shower with a greater ZHR.

(i) Given that the Geminids (RA: 7h 28min) peaks around mid-December every year,
estimate what is the time of its highest activity during peak season to the nearest hour.
Give your answer in local solar time and briefly justify your answer. [2]

(j) The Leonids experiences a large spike in ZHR every 33 years, causing a meteor storm.
Suggest why this happens. [1]

Well now you know. The next time you see a shooting star, remember that they are all space rocks and
ice in the midst of their celestial journey and you just happened to be facing the right direction in the sky
at the right time to catch a glimpse of it. And remember to make a wish, it probably works just as well
whether its stars or space rocks.
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Question 2 Twinkle Twinkle Little Star in the Great Nebula

Part I Twinkle Twinkle...
Since antiquity, humanity has been looking up into the night sky. Mesmerised by the shiny objects above
our heads, we have studied and classified them extensively.

(a) It can be observed that most stars twinkle in the sky, except for a few "stars" that
wander across the sky rapidly. Explain why some "stars" twinkle, and why wandering
"stars" do not. [1]

Some other "stars" "twinkle" with a much longer period than the case in (a). Examples of which include
photometric binaries and variable stars.

(b) Explain why the apparent magnitude of a photometric binary varies periodically. [1]

Part II ... Little Star ...
Before delving deeper into variables, we need to have a thorough understanding of stars. In modern
astronomy, we believe that stars must also obey the laws of physics. We can model stars with a few
physical principles. One of the principles is that of mass continuity, described by the equation below.

dM(r)
dr

= 4πr2ρ(r), (1)

where r is the radial distance from the centre of a star. M(r) describes the mass of the portion of the star
contained within a sphere with a radius of r centred at the centre of the star, and ρ(r) is the density of
the star at a radial distance r away from the centre of the star. The equation can be understood as for a
small increase in a distance dr, the increase in mass dM is equal to a thin spherical shell of radius r and
density ρ(r).

A physically sensible model of a star will dictate that M(r = 0) = 0 (the center of the star starts of with
0 mass) and M(r ≥ R) = M⋆ (there is no additional mass beyond the surface of the star). Here, R is the
radius of the star and M⋆ is the mass of the star. These dictations are known as boundary conditions.

(c) What will the boundary conditions on M(r) imply for the values of ρ(r) for different
values of r? [1]

Another principle that is important in describing a star is that of hydrostatic equilibrium. Due to the
self-gravity of stars, the pressure of the plasma within the star is highest near the centre and decreases
radially outward. A star is in hydrostatic equilibrium if at all points in the star, the gravitational force
experienced by the stellar matter is perfectly balanced by the pressure gradient.

The equation for hydrostatic equilibrium can be derived by considering a small rectangular disk of mass
(Figure 7), with a base area of A and a height of dr, at a distance r from the centre of the star. The
downward force (W ) due to gravity and the upwards force (F ) due to the pressure difference at the points
below and above the disk is balanced at equilibrium.

(d) Derive the equation of hydrostatic equilibrium:

dP (r)
dr

= GM(r)ρ(r)
r2

Justify your steps in detail and quote all theorems you have used. [3]

Page 6 of 22



AstroChallenge 2023 Senior Team Round

Figure 7: Disk under hydrostatic equilibrium.

Yet another principle is the all-familiar conservation of energy. It is formulated as below.

dL(r)
dr

= 4πr2ρ(r)ϵ(r), (2)

where L(r) is the contribution to luminosity from an inner spherical portion of the star with radius r
from the centre and ϵ(r) is the rate of energy production per unit mass of the star at the distance r from
the centre.

(e) You are given the following integral:∫ R

0

4πr2ρ(r)ϵ(r)dr = 4πkR2 [Tsurface]4 ,

where Tsurface is temperature of the star at its surface (r = R). Explain the meaning of
the integral on the left-hand side and state the value of k. [2]

Now, we are ready to construct a simple model of a variable star. The oscillations of a pulsating variable
can be modeled by a standing sound wave established in the star. This is akin to the standing sound
wave established in a pipe closed at one end; the closed end is analogous to the centre of the star and the
open end the surface of the star. We can estimate the period of oscillation of the star, τ , by equating it to
twice the time for the sound wave to travel the diameter of the star. The speed of sound in the star is
given by the equation below if the sound wave is a result of adiabatic expansion and compression.

v =

√
γP

ρ
, (3)

where γ is a constant. For simplicity and with a blatant disregard for reality, assume ρ(r) = ρ is
constant.
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(f) Solve the equation of hydrostatic equilibrium to obtain P (r) = 2
3
πGρ2

(
R2 − r2

)
.

Hint: what is a sensible value for P (R) (pressure at the surface r=R)? [3]

We will now attempt to derive the equation for the period of oscillation of the star. Since the time taken
for a sound wave to travel a distance of dr is dt = dr

v(r) , we can construct the integral for the total time τ

accordingly.

(g) Write down the integral for the total time τ for a sound wave to travel the diameter of
a star, solve it and show that the period of oscillation is given by:

τ =
√

6π

γGρ
.

This will come in handy: ∫ 1√
R2 − r2

dr = sin−1
( r

R

)
+ c.

[3]

(h) If a typical classical Cepheid is five times more massive and has a diameter 50 times
longer than our Sun, what is the period of its pulsation? Does the period agree with
that of a typical classical Cepheid variable (1 to 50 days)? Take γ = 5

3
. [2]

Unlike the equation for the period of oscillation, the relationship of the pulsating period with luminosity
is difficult to study analytically. Nevertheless, the variations of the luminosity, the effective temperature,
and the radius of δ Cephei (the archetypal classical Cepheid) are given in the figure below.

Figure 8: Properties of δ Cephei. Modified from The Free Dictionary by Farlex.
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(i) With reference to Figure (8), state if temperature or radius has a greater impact on the
variation of luminosity of δ Cephei. Briefly explain why is this the case.

Hint: study Equations (1) to (3). [2]

Part III ... In the Great Nebula
First documented in the 10th century by a Persian astronomer, the "Great Nebula" of Andromeda (Figure
9) is visible to the naked eye. It was studied as a nebula for many centuries, raising little suspicion.
However, extraordinary characteristics of the "nebula" were gradually unveiled. It had a continuous
spectrum with spectral lines similar to that of typical stars. It moved with a proper motion much more
rapidly than many other objects in the night sky. The "novae" observed in the "nebula" was exceptionally
faint. The nature of the "Great Nebula" became hotly debated near the 20th century and was settled once
and for all in the year 1925. By observing classical Cepheids in the "nebula", Edwin Hubble computed the
distance of the "nebula" using a formula calibrated by Henrietta Swan Leavitt with the Cepheids in the
Magellanic Clouds.

Figure 9: Edwin Hubble’s photographic plate of Andromeda.

(j) Suppose a classical Cepheid in the "Great Nebula" of Andromeda has an average apparent
magnitude of 18.7 and a period of 37 days. Estimate the distance to the "Great Nebula"
of Andromeda. [2]
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Question 3 Escape from the Solar System

Part I Earth-Jupiter Motion
When we observe Jupiter with the naked eye in the night sky, we notice that its motion relative to Earth is
periodic. We can determine the period of this motion by assuming that the mass of the Sun Ms dominates
and thus Jupiter and Earth only experience a gravitational force from the Sun, and that both Jupiter and
Earth orbit in circular co-planar orbits.

(a) Given the above simplifying assumptions, calculate the orbital velocities of both Jupiter
and Earth. Express your answers in km s−1. [1]

Due to the relative orbital velocities of Jupiter and Earth, Jupiter will return to the same position relative
to the Earth and the Sun with a period S, which is also known as the synodic period. The synodic period
of Jupiter is related to the orbital period of Jupiter (PJ) and Earth (PE) by the following relation:

1
S

= 1
PE

− 1
PJ

(4)

On 10 June 2019, Saitama, a nondescript bald man living in Japan, sees Jupiter reaching its highest
altitude at midnight, which means that Jupiter is at opposition.

(b) How long will it take before Saitama is able to see Jupiter at opposition again? [2]

During the next Jupiter opposition, Saitama finds himself frustrated by the unbearably hot summer in
Japan. To save the people of Japan from summer, he decides to send Earth on a trajectory away from the
Sun with his overwhelming physical strength. Because he is lazy and wants to save as much energy as
possible, Saitama decides to boost the speed of Earth by sending it on a gravitational slingshot trajectory
around Jupiter.

A gravitational slingshot is generally used by spacecraft to reduce the fuel needed to accelerate or decelerate,
and this is done by leveraging on the gravitational pull of a planet or some moving celestial body. The
spacecraft performs a close flyby to the celestial body and uses its gravity to alter the speed and/or
direction of its trajectory. This technique was used to boost the speed of the Voyager 1 and 2 spacecraft
such that they could reach the velocity needed to reach an escape trajectory out of the solar system. We
will now proceed to investigate the exact mechanism behind the gravitational slingshot.

Part II Gravitational Slingshot at Jupiter
At the moment of Jupiter’s next opposition, Saitama carries out his gravitational slingshot plan by
delivering an impulse to the Earth in a manner such that the Earth loses all of its tangential velocity, and
instead gains a radial velocity v0 equal to its initial orbital velocity around the Sun (Figure 10).

Since the mass of Jupiter is far greater than the mass of the Earth (MJ >> ME), we can assume that as
the Earth approaches Jupiter, its trajectory and motion relative to Jupiter is deflected by Jupiter’s gravity
in a manner similar to figure 13. To greatly simplify things, we shall also make the dubious (and probably
catastrophic) assumption that the gravitational influence of the Sun can be ignored. By considering only
the Earth-Jupiter interaction, we find that because Jupiter is also moving with an orbital velocity VJ , the
Earth gains a velocity boost as a result.
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Figure 10: Trajectory of the Earth during the gravitational slingshot

To simplify matters, let us first consider a one-dimensional case in an inertial frame where the velocities
of the Earth and Jupiter all lie in one direction (Figure 11). VE and VJ are the initial velocity of Earth
and Jupiter respectively, and VEf

is the final velocity of Earth.

(c) By considering energy and momentum conservation, show that VEf
≈ 2VJ + VE. [2]

Figure 11: One-dimensional model of a gravitational slingshot

We can now consider the 2-dimensional case in an inertial frame where the Earth approaches Jupiter
at an angle θ relative to Jupiter’s direction of motion, and is deflected at the same angle, resulting in a
symmetric trajectory (Figure 12).

(d) Given that VEf
≈ 2VJ + VE in the one-dimensional case, derive the expression for VEf

for
the two-dimensional case in terms of θ, MJ and ME. [3]
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Figure 12: Two-dimensional model of a gravitational slingshot

This relatively simple derivation should gives us some intuition as to why the Earth can gain a velocity
boost from slingshotting around Jupiter. However, notice that in our derivation, even though we have
specified angle at which the earth approaches Jupiter, θ, this does not actually specify the trajectory of
the earth (imagine displacing the earth while leaving its velocity direction unchanged; logically it should
result in a different trajectory, but our derivations do not take that into account). In fact, by imposing
the symmetry requirement, we have already made a particular implicit choice of trajectory. To properly
describe the trajectory of Earth, we need a few more ingredients.

Part III Deflection of Earth’s Trajectory
Let us assume a simplified gravitational slingshot model where the larger mass M is far greater than the
smaller mass m (M >> m). We will also assume that the smaller mass m is approaching a stationary M
from a very great distance away (this means that mathematically we can treat m as having an initial
position at infinity) with an initial velocity v0. The trajectory of the smaller mass m will be deflected
by the gravitational force of the larger mass M (see figure 13) and approach a direction at an angle ϕ
relative to its original direction of travel. ϕ is thus also called the angle of deflection.

Since we are assuming that m is negligible relative to M , we can assume that M is practically stationary
throughout the interaction (you will justify this assumption later on), and thus by conservation of energy,
the smaller mass m approaches a final velocity equal to v0.

Figure 13: The deflection by a moving mass by the gravitational force with an angle of deflection ϕ.
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Also, since we assumed that the larger mass M is stationary, we can treat its position as constant, and
treat it as a convenient origin for a set of polar coordinates (r, θ). The trajectory of the smaller mass can
thus be described by the following equation:

r = C

1 + e · cosθ
(5)

where C is a constant, e is the eccentricity of the trajectory, θ is the angle measured from the line of
symmetry of the trajectory. We will also further define a quantity called the impact parameter, b, which
is the distance between M and m perpendicular to the direction of the initial velocity v0 (see figure 14).
As we will see, b is the sole free parameter that determines the angle that m is deflected by M .

Figure 14: The trajectory of the smaller mass as described by the polar coordinate equation.

In the case of M >> m, C and e can be written as:

C = L2

GMm2
e =

√
1 + 2E

m
( L

GMm
)2 (6)

where E and L is the total energy and angular momentum of the system respectively.

Gravity is a central force, meaning it only ever acts radially along the same line joining two masses. For a
collection of masses moving only under the influence of central forces, its total angular momentum L will
always be conserved. In 2 dimensions, we can define L relative to some origin by:

L = mr2ω (7)

where r is the distance of the mass m from the origin, and ω = dθ
dt is its angular velocity relative to the

origin. Since angular momentum is conserved, we can greatly simplify our equations by considering the
original angular momentum the small mass m has at infinity. Similarly, since total mechanical energy is
conserved, we can consider the total mechanical energy possessed by the mass m at infinity.

(e) Express the angular momentum L and total energy E of the small mass m in terms of
the initial speed of the small body v0 and the impact parameter b. [2]

(f) Thus, express the constant C and eccentricity e as given by (6) in terms of the mass of
the large body M , v0 and b. [1]

(g) From equations (5) and (6), derive the expression for rm, the closest distance between
mass m and mass M as mass m moves along its trajectory, in terms of M , v0, and b. [1]
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By considering the equation of the trajectory (5) , we find that θ approaches a finite value θmax as r
approaches infinity. θmax is related to the deflection angle ϕ by the following geometric relation (which
can be also derived from the diagram):

ϕ = 2θmax − π (8)

(h) Thus, derive the expression for the deflection angle ϕ in terms of v0, b, and M . [2]

To simplify our calculations, we have assumed that the larger mass M is stationary before and after the
interaction. In reality, due to conservation of linear momentum, the larger mass will have a nonzero final
velocity VM after the interaction. We have to show that our assumption of a stationary M is a valid
approximation for M >> m.

(i) Show that the final velocity of the larger mass can be written as:

VM = v0

m

M

√
2(1 − cos ϕ)

[2]

From equation (i), we see that in the case of m
M << 1, VM ≈ 0. This justifies our use of the conservation

of energy to approximate the final velocity of the smaller mass m.

In summary, the trajectory (and thus the angle of deflection) of a small mass (like Earth) around a much
larger body (like Jupiter) can be completely specified by the impact parameter b. We can of course relate
the velocity boost equation we found earlier in part II to the impact parameter b. To do that, we would
need to find an equation relating the angle of approach of Earth in the inertial frame to the impact
parameter in Jupiter’s reference frame. This is left as an exercise to the reader.

Part IV Habitable Zone
After the Earth is sent out of the solar system on a slingshot trajectory by Saitama, it eventually found
itself pulled into a circular orbit around a new star weighing 1.5 solar masses and with a temperature 1.2
times that of the sun, with a radius 1.3 times that of the sun, at a new orbital velocity of 30 km/s. The
fate of the Earth now depends on whether it had fortuitously entered the habitable zone of its new star.

A hot body with temperature T emits energy per unit second according to the Stefan-Boltzmann equation.

P = AeσT 4 (9)

Where P is the radiated energy per unit second A is the surface area of the body e is the emissivity σ is
the Stefan-Boltzmann constant T is the temperature of the blackbody

(j) Given that the sun can be modeled as a perfect black body (e = 1), with a temperature
of 5800 K and radius of 696,340 km, estimate the equilibrium temperature of Earth in
its original orbit around the sun (assume a circular orbit and ignore the effects of an
atmosphere). [2]

(k) Estimate the equilibrium temperature of the Earth in its new orbit around the new star.
Does the new orbit of the Earth lie in the habitable zone of the star? [2]

After all his efforts, Saitama is satisfied that he has saved the people of Japan from the vicious summer
heat (as for the freezing cold of interstellar space, they’re on their own). The only thing that he regrets is
that he can no longer visit Earth anymore, as thanks to the conservation of momentum, Saitama found
himself ejected out of the solar system in the opposite direction at relativistic speeds.
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Question 4 An Afternoon at the Sundial Garden

Part I How does a sundial work, anyway?
One fine afternoon, you decide to take a walk around the Singapore Botanic Gardens to let off some steam
and explore the wonders that glorious Mother Nature (read: NParks) has to offer. As you wander about,
you stumble into a small clearing surrounded by four small ponds and a grove of trees. In the centre of
the clearing, you find a peculiar device mounted on top of the pedestal (Figure 15).

Figure 15: A peculiar device mounted on pedestal

Upon closer investigation, you find a row of hour markings etched into the metal arc. This device must
be a sundial, though it certainly did not fit what you thought a sundial would look like. This particular
sundial is actually an equatorial sundial with a dial ring.

(a) For each of the directions A, B, C and D labeled in Figure 15, identify the corresponding
cardinal direction (North, South, East and West). Note that there can be more than 1
set of correct answers. [1]

Sometimes you may see an equatorial sundial with a dial plate instead of a ring (Figure 16), with hour
line markings on both sides of the dial plate. This is needed because the declination of the sun changes
over a year from 23.5◦N to 23.5◦S, thus each face of the dial plate is sunlit for only half the year.

Figure 16: A sundial with an equatorial

plate in the Forbidden City, Beijing1.

1Image by Sputnikcccp. From Wikimedia Commons.
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(b) Does the changing declination of the sun affect the accuracy of time readings2 on an
equatorial sundial? Briefly explain why or why not. [2]

(c) Instead of an equatorial sundial, can we conceivably create an ’ecliptic sundial’ (where
the dial plate/ring is aligned to the ecliptic plane)? If yes, briefly explain how you would
construct one. If no, briefly explain why not. [2]

A Sundial Primer

A sundial consists mainly of two parts; the gnomon and the dial. The dial is usually a surface
which may be flat or curved like a ring or globe, with hour line markings engraved. The gnomon is
the part of a sundial that casts a shadow on the dial surface, and the position/angle of the gnomon
shadow on the dial plate determines the time to be read off.

The most common type of sundial in popular imagination is the London-type dial (Figure 17),
which has a horizontal dial plate and a wedge-shaped gnomon. The edge of the gnomon (known as
the style) is aligned with the axis of rotation of the celestial sphere. Therefore, London-type dials
(in fact, sundials in general) are specifically made for a particular latitude and will not provide
accurate time readings at other latitudes.

An equatorial sundial in contrast has hour markings engraved on a plate or ring mounted in the
same plane as the celestial equator, normal to the gnomon. As a result, and unlike a London-type
dial, the hour markings on an equatorial dial are equally spaced apart.

Figure 17: Anatomy of a London-type dial a

aImage by Clem Rutter, Rochester, Kent. From Wikimedia Commons.

2For clarity, this is referring exclusively to apparent solar time
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Part II Nodus and Gnomon
Inspired by your recent pilgrimage to the Sundial Garden, you decide to construct a sundial of your own
based off vague memories of a sundial-making activity in Kindergarten. To construct the sundial, you
push a pencil through a hole in a paper plate. The pencil thus acts as a vertical gnomon, and empirical
hour lines can be drawn on the paper plate by tracing the gnomon shadow at a given watch timing.

Figure 18: A rudimentary sundial 3.

Empirical hour lines are made by tracing the

gnomon shadow at regular time intervals

Wait, something’s not right, you thought. A gnomon should be aligned with the axis of the Earth’s
rotation, and at equatorial latitudes, it would be mean that your gnomon needs to be lying flat on the
ground! So what exactly have you created? Is this even a sundial? What other lies were you told back in
Kindergarten?

What you have made is closer to what we may call a nodus-based sundial. Unlike equatorial and horizontal
sundials with an axial gnomon, the gnomon shadow of a nodus-based sundial may not be aligned with
fixed hour lines. Time instead is determined by the shadow position of a designated point on the gnomon,
called the nodus. In the above example, we can treat the very tip of the pencil shadow as the nodus, and
use its position on the hour line markings to tell the time accordingly.

(d) For the sundial with a vertical gnomon shown in Figure 18, state what physical quantity
do the ’hour lines’ actually measure and explain why does the shadow of a vertical
gnomon not correspond to an hour line in general. [1]

(e) Therefore, suggest how should the hour line markings be drawn for such a rudimentary
sundial at a latitude of 0◦N. [1]

In general, the hour lines for both nodus-based and axial gnomon sundials are projections of hour circles
onto the plane of the gnomon’s shadow. The difference is that for a sundial with an axial gnomon, the
base of the gnomon style is guaranteed to be the intersection of hour circle projections on the dial plate.
In other words, hour line markings can be defined by an angle made with the noon line, known as the
hour line angle (not to be confused with the hour angle). For nodus-based sundials, the hour lines will
eventually converge at a point away from the base of the gnomon.

(f) In practice, a London-type horizontal sundial with an axial gnomon will generally offer
a greater range of clock time readings than a nodus-based horizontal sundial. Briefly
explain why. [1]

3Sarah McClelland. (2021, July 29). How to make a sundial. https://littlebinsforlittlehands.com/how-to-make-a-sundial/.
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By considering the geometry of the gnomon, the gnomon shadow and the direction of the sun’s rays
(Figure 19), we can derive an equation relating the hour line angle θ, the hour angle of the sun H and the
local latitude ϕ. This equation is given by tan θ = sin ϕ × tan H.

Figure 19: To simplify the setup, the sun is fixed at zero declination, and thus

angles ADB, DBC and ABC are all right angles. This allows us to derive the

hour line angle equation by considering simple trigonometric relations between

the sides.

(g) Based on the given formula or otherwise, explain why a London-type dial may not be
particularly practical at latitudes close to (but not on) the equator. [2]

Hour Circles and Hour Angles
Hour circles are longitudinal circles which intersect at the north and south celestial poles and are
similar to Right-Ascension lines in a RA-Dec coordinate system. The hour angle of an object is
defined by the angle between the plane of its hour circle and the plane of the local meridian (which
is also the noon hour circle). The hour angle of the sun, in essence, defines the local solar time at
a particular location.

Figure 20: Diagram illustrating how the hour

angle is defineda.

aImage by Sch. From Wikimedia Commons.
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Part III Time Axes
Over the course of a day, the shadow of a sundial nodus will trace out a curve as the sun rises and sets.
However, over a year as the declination of the sun changes, the height and position of the nodus will
change for a given time of the day, resulting in a different curve traced out. These curves are therefore
called the declination lines of the sundial. Declination lines are non-intersecting and are part of a family
of mathematical curves known as conic sections. At mid-latitudes, the set of declination lines form a
shape resembling a double-bladed axe (Figure 21).

Figure 21: A vertical nodus-based sundial with declination lines

inscribed. Note that the hour lines are not symmetrical about the

noon line as the wall is not aligned in the E-W direction.

As each declination line corresponds to a particular solar declination, the position of the nodus shadow
can be used to tell the time of the year, with some caveats.

Figure 22: Declination lines generated for a location at 30◦N

Page 19 of 22 [Turn over]



AstroChallenge 2023 Senior Team Round

(h) Figure 22 shows a set of declination lines for a location at a latitude of 30◦N. State
which of the 7 declination lines (labeled A to G from the top) does nodus shadow fall on
for the following dates: [2]

(i) Spring Equinox

(ii) Summer Solstice

(iii) Autumn Equinox

(iv) Winter Solstice

(i) Therefore explain why it may be difficult to determine the exact date marked by the
position of the nodus shadow on the declination lines on the days near solstices. [2]

The declination lines shown in Figures 21 and 22 are generally hyperbolic curves, which are a type of
conic section. The reason that hyperbolic curves are formed is because over the course of a day, the sun
traces out a circular path in the sky along lines of constant declination, called diurnal circle. Light rays
from the sun passing through a sundial nodus will thus trace out a conical surface over the course of a
day, and the intersection of the ground with this cone produces a conic section.

(j) Is it possible for declination lines to be parabolas or ellipses? If so, explain what are the
conditions for such declination lines to occur. If not, explain why. You may sketch a
diagram to supplement your explanation if you wish. [2]

Conic Sections

Circles, Ellipses, Parabolas and Hyperbolas are all part of a family of curves called conic sections.
Conic sections are named thus because they can be constructed geometrically by intersecting a flat
plane with a cone, and the type of curve produced depends on the relative angle between the flat
plane and the slope of the cone (see Figure 23).

A circle is formed when the intersecting plane is exactly normal to the cone’s axis of rotation, and
a parabola is formed when the intersecting plane is exactly parallel to to the slope of the cone.
An ellipse is formed when the intersecting angle is between that of a circle and a parabola, and a
hyperbola is formed when the intersecting angle is greater than that of a parabola.

Figure 23: Conic Sections
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Part IV The Equation of Time
In many sundials, you will find a small curve graph known as the equation of time, which tells you how
many minutes have to added or subtracted from the time shown on a sundial to obtain the actual watch
time on any particular day of the year. A full-size equation of time graph is attached in the Appendix for
your reference.

(k) Let us consider the sundial in figure 18 with empirical hour lines marked according to a
watch showing Standard Singapore Time (SST) on 1st of October. If the sundial shows
that the time is 12:00pm on 1st of March, what is the actual watch time in SST? [2]

It should be possible to construct the hour lines on a nodus-based sundial such that it automatically
compensates for the equation of time. This is done with a curved hour line that is ahead or behind the
original straight hour line at points corresponding to different solar declinations, with the time difference
given by the equation of time.

(l) Describe the shape of the hour lines if such a correction was to be applied. You may
supplement your description with a sketch if needed. [2]

Clock Time and Sundial Time

Due to the obliquity of the ecliptic and the eccentricity of Earth’s orbit around the Sun, the Right
Ascension of the Sun does not increase at a constant rate throughout the year, and therefore the
time between successive local noons varies. If we imagine a mean sun that moves along the ecliptic
with a constant increasing Right Ascension, the time between successive local noons is fixed. Over
the course of a year, the actual position of the Sun (called the apparent sun) will fall behind or
move ahead of the Mean Sun at different parts of the year. A sundial measures time according to
the actual position of the sun in the sky, and therefore shows what is known as apparent solar
time. A clock on the other hand measures time according to a constant reference oscillation, and
therefore shows mean solar time. This difference between the apparent and mean solar times over
a year is captured by the equation of time.

Most modern clocks however are set according to a time standard such as GMT, which is the Mean
Solar Time at Greenwich, London. If we build a sundial and apply the equation of time to obtain
the (local) mean solar time, we will find that it diverges from clock time as defined by time zone
standards.
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Part V Appendix
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