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Question 1 Short Answer Questions

An Evening Date
Analyse the story below and answer the following questions.
One clear December evening, Jack brought Jill to a rooftop of a high-rise building to stargaze. Once
settled down, Jack started setting up his telescope.

"Help me hold this,” Jack said as she passed Jill the OTA.
“What is this?” Jill asked as she reached out to take the OTA.
“It’s the optical tube assembly of a refractor telescope, careful not to drop it as the glass inside might
crack,” Jack explained.

Thereafter, Jack tightened the OTA onto the mount and inserted the eyepiece. He carefully balanced the
setup before mounting and aligning the finder scope.

Looking at his watch, Jack realised that it was only 8pm and Comet Leonard was still above the
horizon. He quickly pointed his telescope at the comet hoping to catch a glimpse of it before it sets. After
3 minutes of intense searching, Jack exclaimed: “I found it! Come and take a look through the eyepiece!”
“What am I looking at?” Jill questioned with a puzzled look on her face. “Is it that super bright thing
near the horizon there?”
“Nope, that bright thing is a planet, it’s the brightest planet in the night sky, with a magnitude of 5. But
what you are seeing right now is a comet, it has a magnitude of -4.” Jack explained patiently.
“Wow! I can’t even see the comet in the sky, how were you able to find it and even tell that it is a comet?”
Jill asked.

“Well it’s quite simple and I shall leave this question as an exercise for the readers.” Jack muffled
to himself, not wanting Jill to find out that they were just characters in a story.

“What did you say?” “Oh, I was saying I just moved the two axes of the mount up and down, left
and right and just happen to point my telescope at it. It’s quite simple to use and has no counterweights.
Hahahaha.” He explained as he tried to hide the awkwardness with laughter.
“I see.” Jill mumbled as she stares at the comet as it slowly drifted out of the view of the eyepiece. “Why
is the comet moving out? Is it because it is very close to us?”
“It’s because the Earth is rotating. The comet itself is quite far, although not as far as the background
stars, and the movement is minute,” Jack said.

“Let me change to an eyepiece of a shorter focal length so that the comet stays longer in the field
of view.”
“It’s alright, I’ve seen enough of it.” Said Jill as she seemed unimpressed by the comet.

“Alright, let’s take a look at the winter night sky instead!” Jack said as he tried to reignite her in-
terest.

(a) Name and explain three factural errors/mistakes in the above paragraphs. [3]

Solution:

1. Jack balanced the setup before mounting the finder scope. This will cause the setup to be
unbalanced again.

2. The magnitude of the comet and the brightest planet is flipped. You won’t be able to see a
magnitude 5 object easily with the naked eyes.

3. Jack said that he used an eyepiece of a shorter focal length to make the comet stay longer in the
Field of View (FOV). However, a shorter focal length means larger magnification and the comet
will stay shorter in the FOV.
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Note: The comet moving out of the FOV due to its own movement is not a valid explanation. This
is because the apparent movement of the comet due to its motion through space is negligible when
compared to the comet’s apparent movement due to Earth’s rotation.

(b) What was the planet near the horizon? [1]

Solution:

Venus. It is the brightest planet in the night sky.

(c) What type of mount was used? Explain your answer. [2]

Solution:

The mount used is an altitude-azimuth mount.

This is due to the lack of a counterweight and the up-down-left-right movement of the axes.

(d) Explain how Jack was able to find and differentiate the Comet from other stars. [2]

Solution:

Jack was able to find the Comet by checking Stellarium/memorising the location of the comet/star
hop from nearby stars/any reasonable answers.
Jack was able to differentiate the Comet as the Comet has a tail/Comet moves with respect to
background stars.

Note: Jack would not have been able to use the Comet’s brightness as a differentiating point
since it is too dim (mag 5).

(e) Without using radar ranging, suggest a way that the distance of the comet can be
calculated or measured. [2]

Solution:

We can measure the perihelion and aphelion of the Comet. Calculate the period using Kepler’s
Third Law. Then calculate the location of its orbit using Kepler’s Second Law. Then we will get
the distance by taking the angle between the Sun and Comet, combining with the location of the orbits.

We can use parallax by taking measurement of the parallax angle from two different points on
Earth, thus getting the distance.

Note: Measuring and comparing the comet’s parallax over a few will not yield a unique result. Since
we do not know its velocity, it could be very far but fast-moving or very near but slow-moving.
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(Story Cont.) After that, the two of them sat down and started to look up into the night sky. Jack
explained to Jill how her zodiac constellation looked like and how to recognise the alpha star of that
constellation, which is also a red giant. Jack also showed Jill some other deep sky objects (DSOs) through
his telescope.

(f) Name 4 possible DSOs that were seen through the telescope. They must be of different
types. Put the type of DSO in bracket beside the name. [2]

Solution:

Any plausible non-summer sky DSO.

Examples from the Messier Catalogue: Great Orion Nebula (M42) [HII Emission Nebula], Plei-
ades (M45) [Open Cluster], Andromeda Galaxy (M31) [Galaxy], Little Dumbbell Nebula (M76)
[Planetary Nebula]

(g) Jill wondered how the red giant in her zodiac constellation was formed. Explain how the
red giant was formed. [2]

Solution:

When stars of similar mass to our Sun runs out of hydrogen in the core for fusion, it begins to fuse
helium in the core and hydrogen in the shell around the core. This caused the star to expand into a
red giant.

(Story Cont.) As the night continued, their necks got tired they lied down beside each other and
continued their conversation.
“Hey look, it’s the moon!” Jack pointed near the horizon at around midnight.
Jill got up and stared at the moon. “Wow it’s so beautiful!”

(h) What was the phase of the moon on that day? Explain your answer. [2]

Solution:

The Moon phase was last quarter/third quarter. Moon moves eastwards in the night sky. Since the
Moon rises at midnight, it is already three quarters through the lunar cycle.

You can also mention that the Moon was in its Waning Crescent/Gibbous which means the same
thing as last/third quarter respectively.

(j) Explain how the orbit of the Moon causes the phases [1]

Solution:

The angle that the Moon reflects the Sun’s light causes the phases. At any time the hemisphere of the
Moon that faces the Sun is lit, but due to the Moon’s relative position to the Earth, not the entire lit
side of the Moon is visible.
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(Story Cont.) At around 3am, they both saw a flash in the far North.
“Was that a shooting star?” She asked.
“Yes, it is the Ursid meteor shower, we are lucky to see one with the moon up being so bright above us.”
Jack said.
“Make sure to make a wish when you see one again!”

(k) Around what constellation can the origin of the meteor shower be found? [1]

Solution:

Ursa Minor, Ursa Major, Draco. Since the radiant point is somewhere near these three constellations.

Note: For completeness, the Ursids’ radiant point is located in Ursa Minor, near β UMi (Kochab).

(m) Explain how the meteor shower was formed. [2]

Solution:

When a Comet/Asteroid travels across the Sun, it leaves behind a trail of dust, rock and ice. When
Earth’s orbit crosses into the trail left behind, the small dust, rock, and ice enter Earth’s atmosphere.
They burned up in the atmosphere to form a meteor shower.

(Story Cont.) They stayed up till sunrise before making their way back home. (Story End.)

(n) Bonus: Do you think Jill will go out with Jack again for another stargazing session?
Explain your answer. [1]

Solution:

There is no singular "solution" to having a successful relationship. This question was left to the

interpretation of the reader.

We here at Astrochallenge advocate for responsible social interaction.
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Question 2 A Celestial Dance

How to Physics?
In Physics, there are generally two ways of solving any question. One is through the analysis of the forces
acting on any object and applying Newton’s Second Law on the said object. However, this approach is
often problematic for complex problem involving multiple forces as it requires dealing with the addition of
vectors (which is rather difficult).
The alternative is to analyse the problem by considering the total energy on a system. This approach
avoids the complex vector addition that is required when considering forces. Thus, it is often easier to
generalise for more complex problems by simply including the energy due to additional objects.

For this question, we will start by looking at the Sun-Earth System and solving it using the Energy
approach before generalising it to any arbitrary two-star system. This is often done in analyses that
involves binary stars, multiple star systems (such as star clusters) and accurate exoplanet/solar system
planet analysis.

Part I Earth-Sun System
We can start by looking at the total energy of the Sun-Earth-System. Let M be the mass of the Sun and
m be the mass of Earth. The total energy for such a system is often written as:

Etotal = 1
2mv⃗2 − GMm

|r⃗12|

where ⃗r12 = r⃗S − r⃗E and r⃗S and r⃗E are the position vectors of the Sun and Earth respectively with respect
to an origin point O. |r⃗12| represents the magnitude of the distance between the Sun and Earth whilst v⃗
is the velocity of the Earth relative to the Sun. Figure 1 below illustrates the system that has just been
described.

Figure 1: The Sun-Earth System

This total energy expression is written with the assumption that the sun is at the centre of the coordinate
system and thus is not moving relative to the coordinate system. However, if we were to generalise this to
an arbitrary two-star system, such an assumption is no longer valid.

The first step in generalising the approach for general two-star system is by taking an arbitrary co-
ordinate system centre at some origin O as shown in Figure 1. In this frame of reference, both the Sun
and Earth will have a velocity with respect to the coordinate system and thus an kinetic energy.
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(a) Rewrite the total energy of the Sun-Earth system in this new coordinate system, given
the velocity of the Sun with respect to this coordinate frame is −→

V . [1]

Solution:

The total (mechanical) energy of a system is the sum of the Kinetic Energies of each object in the
system and the sum of the Gravitational Potential Energies due to the interactions between each pair
of objects in the system.
For the Earth-Sun system, it is just:

Etotal = K⊕ + K⊙ + U⊙⊕

= 1
2mv⃗2 + 1

2MV⃗ 2 − GMm

|−→r12|
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Part II COM Frame
In actual orbital calculations, it is useful to use a particular coordinate system called the Centre of Mass
(COM) frame. This is a special frame of reference for multiple-body systems. In this special frame, we are
able to separate the often complex forces acting on any object within the system, such as the Earth, into
two categories: Internal and External forces. Internal forces due to objects within the system are forces
like the gravitational attraction between Sun and Earth, whilst external forces are forces due to objects
outside the system of interest (like gravitational force due to other solar system object and due to the
Milky Way).

This frame also allow us to analyse the complex motions of objects in this frame into two compon-
ents: one component is the object’s motion around the COM, which is purely due to internal forces and
the second component is the motion of the COM (the system itself) due to external forces1.

With this COM frame, we can now proceed to simplify our expression for the total energy obtained in (a).
To do this, we need to first determine the position of the centre of mass. This is given by the relation:

mr⃗ + MR⃗ = 0

|r⃗| and |R⃗| are the distances from the centre of mass to masses m and M respectively.

(b) Find an expression for r⃗ and R⃗ in terms of −→r12, m and M . You are given the expression
of the reduced mass is:

µ = Mm

M + m

[2]

Solution:

Note: Please note that there was a typo error in the original question paper sent out during AC
Day 1 where the vector signs in the COM relation went missing. The following solution will show the
answer for the corrected version as reflected above.
We aim to eliminate R⃗ from the expressions by introducing the object separation distance −→r12.

mr⃗ + M(r⃗ − −→r12) = 0

(m + M)r⃗ = M−→r12

r⃗ = µ

m
−→r12

We can repeat the process to find for R⃗ to get:

R⃗ = − µ

M
−→r12

Extra Note: Sanity check might warn you that your R⃗ should not have a negative because distance
cannot be negative. Recall that R⃗ is a vector and the negative sign here indicates a flip in direction.

1An additional benefit of this frame of reference for the two-star system is that it is always centred at a point somewhere

in between the two masses, thus reducing the need for complex vector analysis. Thus, from this point on we will use the scale

value r and R to denote the magnitude of the vector r⃗S and r⃗E with the origin at the centre of mass for simplicity and r12 to

denote the distance between sun and Earth (Do note that in general for multiple star system, this simplification is not valid.)
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In general, the value of r, R, and r12 can be varying with time but the mass of the objects are constant.
For the special case of the two-body system, it is always possible to modify the expression for the total
energy such that it is equivalent to having one of the star stationary with the other star moving around
the stationary star with a mass equivalent to the reduced mass.

(c) Show that you can always make such a modification to the two-star system by showing
that the total energy can be expressed as the following:

Etotal = 1
2µ−→v12

2 − G(M + m)µ
|−→r12|

Extra Info: This is equivalent to the total energy in a coordinate system where one of the stars is
stationary and the other star is moving with a speed |v⃗12| where |v⃗12| is the magnitude rate of change
of the distance −→r12. [3]

Solution:

From part (b):

r⃗ = µ

m
−→r12

R⃗ = − µ

M
−→r12

We can thus find the corresponding velocity vectors v⃗ and V⃗ :

v⃗ = dr⃗

dt
= µ

m

d−→r12

dt
= µ

m
−→v12

V⃗ = dR⃗

dt
= − µ

M

d−→r12

dt
= − µ

M
−→v12

With these, we can then substitute back into the expression in (a), together with the fact that
1
µ = 1

m + 1
M , to yield the desired result.

(d) Show that the equation derived in part (c) simplifies to the usual expression for Etotal

when m << M . Thus, explain why we can use this simplified expression for the Earth-Sun
system as well as any other Sun-(Solar System Planet) pair. [2]

Solution:

When m << M , the limiting cases become: m + M ≈ M and µ ≈ m. Thus the expression in (c)
becomes:

Etotal = 1
2mv⃗2 − GMm

|−→r12|
This is exactly the case for the energy of an object m orbiting a mass M where the larger mass M
is fixed in place. Since in most planet to sun mass ratios satisfy m << M , it is okay to used the
simplified version when analysing the system.
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In most orbital questions involving two masses, it is sufficient to further simplify the problem by resolving
the motion of the secondary mass into motions in the radial and angular directions as shown in Figure 2
below.

Figure 2: Radial and Angular Components of the Velocity

The radial motion will lead to the secondary mass experiencing periapsis and apoapsis, whereas the
angular component together with the gravitational potential adjust according to the radial distance to
ensure the total energy is constant, thus maintaining an orbit.

The equation in part (c) can further be simplified by introducing

v2
12 = v2

θ + v2
r

Where v2
θ and v2

r are the angular and radial components of the velocity respectively.

We can define an effective potential energy Ue(−→r12) consisting of the angular component of kinetic
energy and gravitational potential energy. This will give us the form below.

Etotal − Ue(−→r12) = 1
2µv2

r

(e) Show that the effective potential energy as defined by the above expression is given by:

Ue(−→r12) = |L⃗|2

2µ|
−−→
r12|2

− G(M + m)µ
|
−−→
r12|

Where |L⃗| = µvθ|−→r12| is the magnitude of the angular momentum vector, a conserved quantity in this
case due to Kepler’s Second Law. [1]

Solution:

Using the expression given in (c) and substitute the expression given for the magnitude of −→v12 to get:

Etotal = 1
2µ(v2

θ + v2
r) − G(M + m)µ

|−→r12|
Using the expression given the question for the angular component of the velocity yileds:

Etotal = 1
2µv2

r + |L⃗|2

2µ|−→r12|2
− G(M + m)µ

|−→r12|
From here, we take a look at the expression we are given in the question above this subpart and
compare the two. We see that the effective potential energy result follows immediately.

Etotal = 1
2µv2

r + Ue(−→r12)

Etotal = 1
2µv2

r + |L⃗|2

2µ|−→r12|2
− G(M + m)µ

|−→r12|
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(f) Sketch this effective potential energy with respect to the distance between the two
objects. Using the fact that Etotal ≥ Ue for any orbit, explain using the graph where
circular and elliptical orbits occur. [3]

Solution:

Look at the expression for the Effective Potential:

Ue(−→r12) = |L⃗|2

2µ|
−−→
r12|2

− G(M + m)µ
|
−−→
r12|

Qualitatively we have the following:
We have two terms. The first is in the form k1

|
−−→
r12|2

whilst the second is in the form k2

|
−−→
r12|

. To proceed,
we see where each term will dominate.

For very small |−→r12|, the inverse quadratic term will dominate. This makes the overall poten-
tial positive as well.
For very large |−→r12|, the inverse linear term will dominate. This will make the overall potential
negative. It also has the effect of causing the graph to asymptotically approach the x-axis as |−→r12|
tends to infinity.
There will be a point in the middle where the transfer of dominance will take place and the direction
of the curve will change. This has the effect of making a "well". Combining it all together we get the
desired shape:

Figure 3: Effective Potential Plot.

Another way to do it is to find the first and second derivatives of the effective potential in |−→r12|
and see the values of each at different |−→r12| to determine both the gradient and the locations of any
extremum/inflection points. You will get the same shape.

Finally, the points for each type of orbit has also been labelled.
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Part III Restricted Three-Body Problem
Let us shift gears a little. The energy-analysis approach is massively useful as we have seen earlier.
However, let us not discount the force-analysis approach. Sometimes, it gives us a more intuitive feel
about the problem and how things will play out.
Even just by using only the force-analysis method, we can theoretically solve for a restricted version of
the famous Three-Body Problem. In this restricted case, we impose a limit where the mass of the third
object must be insignificant to the other two masses. We will not be solving it today in this question but
rather study its solutions.

For this restricted problem, the solutions that exist are pretty well known. One famous group is
the Lagrange Points and there are a total of five of them.

Figure 4: The Five Lagrange points for the Earth-Sun system.

In this case, the location of the points are easier to explain using the idea of balancing forces. They
are defined as the points where the gravitational forces from the two large objects and the centrifugal
force balance each other. The first three Lagrange points, L1, L2, L3 were in fact discovered by the
mathematician Leonhard Euler. It was the final two Lagrange points, L4 and L5, which were first
discovered by Joseph-Louis Lagrange. That is not to say the energy-approach we did earlier cannot be
applied here. The energy-analysis approach is helpful when studying the stability of objects at these
Lagrange Points.

(g) Does the Lagrange Point, L1, coincide with the Centre of Mass point of the system as
per what we defined earlier in part (b)? [1]

Solution:

No.

L1 is located where the net gravitational attraction from the two masses provides the necessary
centripetal acceleration for a third object to remain in the same relative position with the other two.
Refer to Figure 4 and you see that L1 is closer to Earth. The centre of mass of the Sun-Earth system
is closer to the Sun.
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The other point of interest in Physics is that of the Centre of Gravity. For our purposes, we shall define
this point to be where the gravitational forces by the two objects negate each other.

(h) Does the Center of Gravity coincide with the Lagrange point L1?
Hence, as well as referencing your answer in part (g), roughly sketch the positions of the
Center of Gravity, Center of Mass and L1 for the Earth-Sun System.
Note: The diagram does not need to be to scale but the order of the three points must be shown
clearly. [2]

Solution:

No.

Figure 5: COM, COG and L1 points.

The harder part comes from determining the relative positions of L1 and the COG. Take a look at
the force balance at L1:

Fg,Sun,L1 = Fg,Earth,L1 + Fcentripetal

At the COG, Fg,Sun,COG = Fg,Earth,COG by definition. This means that the COG must be closer to
Earth than L1 in order for the Earth’s gravitational attraction to equal the Sun’s.
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The other Lagrange point of interest is that of L2 due to the launch of the James-Webb Space Telescope
(JWST) on the 25 December, 2021. After launch, it made its journey towards L2.

(j) Show that the Lagrange Point L2 is 1.51 × 109m away from Earth.
Hint: You should use a force analysis here. Additionally, you may find that the resultant equation

may not be easily solved analytically. You may instead use any numerical methods to show the desired

results instead. [3]

Solution:

Following the hint, we start with the force balance for L2:

Fg,Sun + Fg,Earth = Fcentripetal

GM⊙m

d2
⊙

+ GM⊕m

d2
⊕

= mω2dCM

Where m and dCM are the masses of the 3rd object and said object’s distance to the Centre of Mass.

Knowing that the system’s center of mass is relatively very near to the center of the sun, we
will use the approximation that dCM = d⊙. Additionally, we will use a few substitutions:
d⊙ = dsuntoearth + d⊕ = d⊙⊕ + d⊕ and by definition of the Lagrange point: ω = ω⊕.

To our force balance, we will manipulate it to make it:

GM⊙d2
⊕ + GM⊕d2

⊙ = ω2d3
⊙d2

⊕

At this juncture, given the nature of the question, one can plug in the values given to show that both
sides are equal. Doing this, you get (units omitted):

GM⊙d2
⊕ + GM⊕d2

⊙ = 3.116 × 1038

ω2d3
⊙d2

⊕ = 3.119 × 1038

The values are within 0.1%. Given the approximations we made, this is sufficient to show that both
sides are equal and the distance to L2 is 1.51 × 109m.

Extra:
For completeness, we will proceed with the analysis. We will make the substitutions to get a monster:

G
[
M⊙d2

⊕ + M⊕(d⊙⊕ + d⊕)2
]

= ω2
⊕(d⊙⊕ + d⊕)3d2

⊕

G

[
M⊙d2

⊕ + M⊕d2
⊙⊕

(
1 + d⊕

d⊙⊕

)2
]

= ω2
⊕d3

⊙⊕

(
1 + d⊕

d⊙⊕

)3

d2
⊕

This equation is not easily solved; it’s a quintic in d⊕. To proceed, we need to simplify it.

We will expect L2 to be much closer to Earth than to the Sun, so we can approximate that d⊕ << d⊙⊕.
Hence, we can use the Binomial approximation (1 + x)n ≈ 1 + nx for small x. Doing so yields:

G

[
M⊙d2

⊕ + M⊕d2
⊙⊕

(
1 + 2d⊕

d⊙⊕

)]
= ω2

⊕d3
⊙⊕

(
1 + 3d⊕

d⊙⊕

)
d2

⊕

With the approximation, our equation becomes a cubic in d⊕, which is much easier to solve. Solving
it will yield the result:

d⊕ = 1.51 × 109m

Note: Our initial assumption that dCM = d⊙ can be checked. The COM of the Earth-Sun system is
displaced from the Sun’s centre by 4.48 × 106m, which accounts for a 0.0003% difference.
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(k) What are the angular diameters of the Sun and Earth at L2? [2]

Solution:

From geometry, we can get an object’s angular diameter:

θ = 2 tan−1

(
R

d

)
Where θ, R and d are the object’s angular diameter, radius and distance respectively. We can prove
later that the Sun and Earth are tiny at L2, so the small angle approximation is allowed too:

θ = 2
(

R

d

)
Thus:

θ⊕ = 2
(

R⊕

d⊕

)
= 8.437 × 10−3rad = 0.483°

θ⊙ = 2
(

R⊙

d⊙⊕

)
= 9.215 × 10−3rad = 0.528°

(m) State one reason why L2 was chosen as the point to park the JWST? [1]

Solution:

Because relative to L2, the Sun, Earth, and Moon are all roughly in the same direction, and so the
sun-shield, when deployed, can block off all 3 major infrared sources simultaneously.

From QM: The point of part (k) was to show that the Earth is a terrible sun-shield and subtly hint
participants to the right answer here.
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Question 3 A Peek at Infinity

Spacetime
The field of Cosmology studies the universe at the largest scale. One part of Cosmology is understanding
the evolution of the universe. It uses a few concepts from both Special and General Relativity. One of
such concepts is about the idea of Spacetime, which you can think of as the stage for which all events in
the universe perform on.

Thanks to the Astronomer Edwin Hubble, we know today that this "stage" is expanding. Understanding
the nature of this expansion is thus key to understanding the plausible futures of the universe as well as
piece together its history; these we shall soon discover.

Part I Expansion
Let us first consider a “1+1” Minkowski Spacetime, a spacetime that obeys the Lorentz Transformation.
In this case, our Minkowski Spacetime will be 1 dimension of flat2 Space - on the x-axis, with 1 dimension
of time on the y-axis. We will use the coordinate system below to represent our spacetime.

Figure 6: A "1+1" Minkowski Spacetime Diagram

On that diagram, we can label an event which occurs at a particular location in space at a particular

time. This "event" is not limited to abstract ideas. It can also refer to any physical object at a particular
location in space at a particular time.

Let us extend this idea. If we plot an event at multiple locations and time points, we get a series
of dots. By doing this continuously, all the dots get smushed together until we get a line. This line thus
represents the trajectory of the event through space and time. Remember, the coordinates of a point on
this diagram gives you the location and time the plotted event takes place.
For example, the diagram below depicts two stationary objects at x = x1 and x = x2 respectively.

Figure 7: 2 stationary objects on a Minkowski Spacetime Diagram

2Euclidean
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For a static universe, space does not expand. In such a non-expanding scenario, the infinitesimal (very
small) distance between two points in this coordinate system is given by the following:

ds2 = −c2dt2 + dx2

Where c is the speed of light in a vacuum, dt is the infinitesimal (very small) change in time and dx is the
infinitesimal (very small) change in the x-coordinate between two points. The following figure illustrates
it:

Figure 8: Spacetime interval on a "1+1" static Minkowski Spacetime Diagram

(a) Taking the case of the non-expanding Minkowski Space, plot the trajectory of an
object that moves in the positive x-direction by b units with a velocity of b/t and then
immediately moves back to its original location with the opposite velocity. Label your
diagram clearly. [1]

Solution:

Figure 9: Minkowski Diagram for a uniform speed object that reflects back at x = b.
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That was for the case where space was not expanding. In the case of an expanding space3 however, the
infinitesimal distance between two points is now given by:

ds2 = −c2dt2 + a2(t)dx2

This extra a(t) term is what we call the Scale Factor. In this case, it is the scale factor of the x-axis and
is how we mathematically factor expansion into our spatial dimension.

For two objects pinned to x = x1 and x = x2, when a(t) = 2, their physical separation in space
has become twice that of when a(t) = 1 even though their x-coordinates in our spacetime diagram did not

change. This is exactly the case we see in the real world, where objects do not move4 but rather the space
between them expands which increases their physical separation.

To expand on this point, a common analogy used to illustrate this point are two marker dots on
the surface of an inflating balloon. These dots do not move, but because the balloon is expanding, the
two marker dots gets pushed apart.

The scale factor is a function of time t. For an expanding universe, that means that a(t) increases with
time t. This implies that the distance between two stationary objects with constant x-coordinates in
our spacetime diagram will be increasing at da

dt ∆x where ∆x is the distance along the diagram’s x-axis
between the two objects.

(b) Take the case of a constantly expanding space. Draw the path that a light pulse takes, as
it is emitted from a stationary observer at position x = x1 and time t = 0, to a stationary
observer at x = x2

Hint: In a short time interval dt, light travels a(t)dx. Will this correspond to a straight line in the

diagram? [15]

Solution:

Figure 10: Minkowski Diagram for a uniform velocity object in expanding space.

Note that the exact curve (Quadratic, Cubic, Exponential, etc.) is not required, just that the gradient
of your worldline needs to increase.

3We shall limit to expansion only in the x-axis.
4Because of relativity and the dependency on a reference frame for velocity, you cannot say something "does not move"

without also giving the point of reference. But we can still make a physical distinction between movement through Space

and the movement due to the expansion of Space. This caveat shall be ignored for our purposes and left as a topic to be

discussed on another day.
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This first light pulse that was sent has 10 cycles. Next, an identical light pulse is emitted again from
x = x1, just as the tenth cycle of the first light pulse ends at time t = t1.

(c) On the diagram you have drawn, draw the path that the second light pulse took and
compare the time interval between receiving the first and second pulses at x = x2 with t1. [15]

Solution:

Figure 11: Two light beams in expanding space.

The time interval t3 − t2 > t1, the gradient of the two light paths should be the same at the same

time (horizontally) and increasing.

Note: t1 ̸= t2

(d) Following your answer in part (c), what does this imply about the wavelength of light
received at x2 compared to when it was emitted at x1? [15]

Solution:

Since the time interval to receive 10 cycles of the light pulse is longer than that to emit them, and
light travels at a constant speed c in the vacuum of space, the length of the light pulse must thus
have increased and the wavelength of the light has increased.
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In Cosmology, Hubble’s Law defines the relationship between the apparent recession velocity, due to
expansion, and proper distance (distance between two points in space at the same cosmological time).

(e) Show that in our "1+1" Minkowski Spacetime, Hubble’s Law is given by the following:

H(t) = ȧ(t)
a(t)

Hint: The recession velocity is the time differential of proper distance. The proper distance between

two points in space at the same cosmological time is given by ds when dt = 0. [2]

Solution:

We start with Hubble’s Law and replace with the necessary variable:

v = H(t)d

ds

dt
= H(t)d

= H(t)a(t)∆x

= d

dt
(a(t)∆x)

Using Product Rule:

ds

dt
= d

dt
(a(t)∆x)

= da(t)
dt

∆x + a(t)d(∆x)
dt

= ȧ(t)∆x + 0

= H(t)d

Thus:
H(t) = ȧ(t)

a(t)
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In cosmology, one of the ways we can define the size of the Observable Universe is the maximum distance
from where light has had enough time to travel and reach us. To do this, we first must find the age of the
Universe.
The age of the Universe as a function of scale factor is given by the following:

∆t =
∫ t(a)

0

dt

Where t(a) is the age of the universe at a particular scale factor a.

From before, we know that the scale factor changes with time. For the sake of our understanding
today, we will model the change of the scale factor according to the formula below:

da

dt
= κ

a

where κ is a positive constant.

(f) Using the given information, find an expression for the age of the universe as a function
of the scale factor.
Hint: You can treat da/dt as a fraction and change dt to be the subject of the equation. When doing so,

you will need to perform a change in limits from t(a) to a(t) when you perform a change in variable

for the integration. [15]

Solution:

We do a change in variable:

dt = a

κ
da∫ ∆t

0

dt =
∫ a(t)

0

a

κ
da

= a2(t)
2κ

(g) From your answer in part (f), conclude whether the model used for the rate of change in
the scale factor is consistent with what is happening in our current universe? Explain
your conclusion. [1]

Solution:

No. The rate of expansion of the universe is currently increasing instead of decreasing. In fact, the
rate of the expansion of the universe seems to be converging asymptotically to ȧ = κa instead.
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Part II Density
So far what we have done in the previous section is look at how the expansion of space can be modelled.
This leaves an unsolved question: What gave rise to this expansion?

Our current understanding of the Universe makes use of the Big Bang Model, when space and time came
into existence and space has been expanding ever since. In that model, the rate of expansion is governed
by the various densities throughout the universe’s history.

(h) While the size of our observable universe is finite, the size of the actual universe itself
may well be infinite.
Hence, explain what is meant when we say the Big Bang started off from a singularity
even though it is impossible for a single point to expand into infinity, given the finite
history of the Universe. [1]

Solution:

What started from a singularity is the size of the Observable Universe, since light needed time to
reach us, the size of the Observable Universe when the age of the Universe is 0 will be 0. The size of
the Observable Universe then expanded as the Universe ages.

Extra Notes: If the Universe is infinite (which would be the case if it is flat and there is no
centre of expansion), it would have been infinite at the moment of its creation – the Big Bang. Since
space came into existence at the Big Bang, the Big Bang happened everywhere in the Universe. From
our perspective, everything is moving away from us, at least whatever we can see in our Observable
Universe. Every point in space has their own finite Observable Universes - the bubble of light that
had time to reach them since the birth of the universe. These bubbles would have zero size at the
moment of the Big Bang.
For further reading: one can visit https://physics.stackexchange.com/questions/136860/did-the-big-
bang-happen-at-a-point

As mentioned at the start of this question, this field borrows concepts and understanding from Relativity.
From Einstein’s General Relativity, mathematician Alexander Friedmann derived equations governing the
expansion of the universe. Today we know them as the Friedmann5 Equations. Equation (1) below is one
of the results that Friedmann derived, which governs the rate of expansion of space.

d2R

dt2
=
(

−4
3πG

[
ρm + ρrad + ρΛ + 3(Pm + Prad + PΛ)

c2

])
(1)

Where:
1. R is the scale factor of the universe, analogous to the scale factor a(t) of the x-axis as we have discussed

before in the previous section.
2. G is the Universal Gravitational Constant.
3. ρm, ρrad, and ρΛ are the equivalent mass density of matter, radiation, and cosmological constant

respectively.
4. Pm, Prad, and PΛ are the pressure exerted by the matter, radiation, and cosmological constant, on

space respectively.
5. c is the speed of light in a vacuum.
6. Λ is the cosmological constant.
7. k is a constant that indicates the curvature of space. When k > 0, space has positive curvature; when

k = 0, space has no curvature; and when k < 0, space has negative curvature.

In short, equation (1) denotes how the acceleration of the scale factor of the universe is affected by the
presence of matter, radiation, and the cosmological constant. Matter and Radiation were entirely created
from the moment of the Big Bang. The cosmological constant, however, is a property of free space itself.
Thus, it is constantly being produced through the expansion of the universe as expansion results in more
space.

5They are actually also attributed to 3 other people who arrived at them independently: Georges Lemaître, Howard P.

Robertson and Arthur Geoffrey Walker. For convenience we shall just refer to them as the "Friedmann equations".
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Now you may be thinking – why would radiation have mass? Aren’t photons massless? You would be
right, but light carries energy, and with Einstein’s famous mass-energy equivalence in the form of E = mc2,
we can assign a "mass" to the energy of radiation. We call that the relativistic mass of the photons
responsible for radiation. This is a parallel to the rest mass that forms most of the mass of matter.

Friedmann had two equations. We have seen the first, now we shall introduce his other equation which
outlines the relationship between the equivalent mass density and pressure. This relates the change in
equivalent mass (and hence energy) densities as the volume of space increases to the work done by the
pressures the various components of our universe exert.

dρ

dR
= −3

(
P
c2 + ρ

R

)
(2)

(j) Given that ρm ∝ R−3, ρrad ∝ R−4 and ρΛ ∝ R0, show the following:

Pm = 0

Prad(ρrad) = 1
3ρc2

PΛ(ρΛ) = −ρc2

[3]

Solution:

The key here is to transform the proportionality to equality by adding a proportionality constant.
We do for matter first.

d

dR
(kmR−3) = −3P/c2 + ρ

R

−3kmR−4 = −3P/c2 + ρ

R

Isolating for Pressure:

P = (kmR−3 − ρ)c2

= 0c2 = 0

Repeating these same steps for Radiation and Cosmological Constant will yield the other two results.

(k) Hence, with reference to equation (1), suggest how the presence of matter, radiation,
and the cosmological constant influence the rate of expansion of space. [3]

Solution:

The combined effect from matter is:

ρm + 3 × 0/c2 = ρm

The combined effect from radiation is:

ρrad + 3 ×
(

1
3ρradc2

)
/c2 = 2ρrad

From the cosmological constant:

ρΛ + 3 ×
(
−ρΛc2

)
/c2 = −2ρΛ

Hence, matter and radiation make the acceleration of the expansion of the universe more negative
and slows down the expansion of space while the cosmological constant makes the acceleration of the
expansion of the universe more positive and speeds up the expansion of space.
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(m) With reference to how ρm, ρrad, and ρΛ changes with R, arrange the periods when the
expansion of the universe was dominated by the influence of radiation, matter, and the
cosmological constant in chronological order. [2]

Solution:

Since the equivalent mass density of radiation decreases by the fourth power of scale factor while
that of matter only decreases by the third power and as R approaches zero, the finite value of the
equivalent mass density of the cosmological constant must be smaller than those of radiation and
mass which tends towards infinity; the equivalent mass density of radiation will be the highest at the
start of the universe and it dominates in influencing the expansion of the universe.

As the equivalent mass density of radiation decreases more rapidly than that of matter, matter
dominated period of the universe’s expansion comes next.

Finally, as both the equivalent mass densities of radiation and matter decrease as space expands, the
cosmological constant, whose equivalent mass density remains constant with expansion, dominates
the expansion of the universe, as is the case today.

(n) Why can’t the expansion of our current universe be explained by a universe filled with
matter and radiation alone? [1]

Solution:

As the Supernova Cosmology Project and the High-Z Supernova Search Team showed in 1998, the
universe is expanding at an accelerating pace. With only matter and radiation, the equivalent mass
density of pressure of radiation and matter only serves to slow down the expansion, and not speed it
up, as shown in Equation 2.

Note: Just stating that the universe is expanding at an accelerating pace is sufficient.

Extra Notes for Question 3
This question has brought to light some topics from General and Special Relativity as well as Cosmology.
Given the broadness and difficulty of this topic, we recommend some extra texts for further reading:

1. For an introduction to Cosmology without requiring any GR knowledge, the classic text is that by
Ryden (2002).

2. For SR, some recommended texts are: Taylor and Wheeler (1966), Mermin (1989), Arzelies (1966)
and more.

3. For introductory GR and for students who are more comfortable with the ideas of SR can consult
Schutz (2009) and Hartle (2002) for a brief mathematical discussion of it before progressing to GR.
Another text would be the one by Misner, Wheeler and Thorne (1973).
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Question 4 Lights, Camera, Chill

Astrophotography
As the prices of DSLRs drop since their inception, more people now can take photographs of the night
sky. The art of Astrophotography has caught on to become a serious pastime for amateur astronomers.

Part I Photography Jargon
Before we jump in, we should familiarise a little on some technical jargon that is commonly used in the
photography community. The ultimate goal of a photographer is to control the amount of light captured
by the sensor when taking a photo. It cannot be too much light else the photo will come out overexposed
(too bright). The converse is true too, when the camera does not capture enough light.

To achieve a good control over light, photographers concern themselves with 3 main settings:

Camera Settings What it Controls
Shutter Speed / Exposure Length The length of time the sensor is exposed to light.

(e.g. 1/3s, 1/1000s, 1s, etc.)
ISO The Sensitivity of the sensor.

(pronounced "eye-soh") Higher ISO = More Sensitive
f-Number/Ratio Aperture size of the lens.

Same definition with a telescope’s f-ratio.

Table 1: The 3 main camera light control parameters.

These three settings are what a photographer uses to control the amount of light that hits the sensor.

The last setting is known as the Zoom. It controls how magnified the image will be. It is usually
expressed as the focal length of the lens. (e.g., 18mm, 35mm, 120mm etc.)
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Part II Camera Properties
James has recently gotten himself an entry-level DSLR camera and wants to try his hands at
Astrophotography. He is planning a road trip to a nearby dark-sky site to test what he can possibly
capture. The table below shows some basic specifications of the camera he is using:

Camera Property Value
Model No. Nikon D3500

Sensor Size (Width × Height) 23.5mm × 15.6mm
Sensor Pixel Resolution 6000px × 4000px

(Width × Height)

Table 2: Basic Specifications of James’ Camera

James wants to plan his shot, so he decides to understand a bit more of how his camera will work before
leaving. He starts by analysing the camera itself.

(a) If we assume that the pixels in his sensor are squares, calculate the size of each pixel in
micrometers. Give your answer to 1 d.p. [1]

Solution:

We can pick to calculate either by width or height:

1. Width:
l = 23.5

6000 = 3.9µm

2. Height:
l = 15.6

4000 = 3.9µm

Either way we get the same answer to 1 d.p.

Thinking about it a little more, when James connects his camera lens to the camera, the setup essentially
functions like a telescope where the focal length of the scope is equals to that of the lens’ focal length.

He wants to know how much of the sky he can take given a certain lens focal length and his sensor size.
In essence, he wants to know how big a heavenly body with a certain angular diameter θ will appear on
his sensor and thereafter the image taken.

In technical terms, he wants to find the Plate Scale of his setup.

Figure 12: Plate Scale of a Telescope
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(b) Given an optical setup with a focal length f , show that the Plate Scale (PS), in units of
arcseconds/mm, of the setup is given by

PS = 206265
f

[2]

Solution:

Every object with an angular size θ in the sky will be focused into an image of size S based on the
optical set-up.
We refer to the figure and get the desired geometry. We focus on the ray that passes through the
principal axis of the lens.

Figure 13: Plate Scale Geometry

We will get the desired:
tan θ = S

f
≈ θ

Where θ is the angular diameter of the object in radians, S is the image height and f is the focal
length.
To convert radians to arcseconds as required:

1 radian = 180
π

° ≈ 206265”

Since the question wants the Plate Scale, we find the image size of a hypothetical θ = 1” angular
diameter object:

S

f
= 1

206265

PS = θ

S
= 206265

f
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In this question, for simplicity, we shall treat James’ camera setup as something like that of a Newtonian
telescope. In reality, the camera lens will change the optics slightly.

The important thing to note in this question is that the lens will act as the Optical Tube Assembly (OTA)
of a telescope setup. The lens’ focal length will be analogous to that of the OTA’s focal length.

(c) Given that James hooks a camera lens with a focal length of 300.0mm, calculate the
Plate Scale of his camera setup. [1]

Solution:

We use the formula provided in (b).

PS = 206265
f

= 687.6”/mm

(d) If James wants to have the full moon fit just nicely in his image, what focal length does
he need? [2]

Solution:

The angular diamter of the Moon is given by:

θMoon =≈ 2 × RMoon

dMoon

= 0.518°

Note: A small-angle approximation was used here. Using arctan would yield the same result to 3
d.p.

We want the moon to fill the image. Since the image is rectangular, this means that the limit-
ing side will be the image’s height. So we want the moon to span the height of the image.

From (a), the height of the sensor is 15.6mm. For the moon to span the height in the image,
we find that the required PS is:

PSreq = θmoon

hsensor
= 120”/mm

Using the relation given in (b), we find that the required focal length is:

f = 206265
PSreq

= 1720mm

Note: This value may seem big but realistically we usually put the camera sensor to the back of a
telescope. A C6 with a focal length of 1500mm usually fills up the whole image with the moon. Our
answer isn’t too far off.
Differences in values will be because of the assumptions we made in this question.
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Part III Planning the Shot
Because of the low-light level nature of astrophotography, photographers will have to take long-exposures.
This works by allowing more photons to hit each pixel on the sensor, the more photons that hit a pixel,
the brighter the output from that pixel will be (brighter pixel).

Note that it does not time average the brightness. The brightness of a pixel purely represents the
number of photons that hit that pixel when said pixel was exposed to light.

Because of this and the fact that the sky rotates as time passes, a star or any source of light will
start leaving trails in the image if the camera is not rotating along with the sky. This is how we get
star-trail photos.

James has this sweet zoom lens with a focal length of 300.0mm. He intends to take the photo of the
M11, the Wild Duck Cluster. It is a rather bright star cluster close to the Celestial Equator. Because
James just got into photography, he does not have a tracking mount for his camera.

(e) James wants to avoid having star trails in his image of M11. What is the maximum
amount of time he can leave his sensor exposed before ALL the stars start visibly ap-
pearing as star trails in his image? You can treat the stars as point sources in this question.

Note: Star trails start becoming visibly apparent when a source that covers 1px stretches out
to span 5px in any direction. [4]

Solution:

Star trails form because the camera is not tracking the stars as they move across the night sky. To
see when this becomes visible, we need to find out what is the maximum distance these stars can
travel become crossing the threshold.

We start by first checking that the note given in the question applies. Because the stars are
treated as point sources, their image will comfortably be contained within 1px of the sensor. Thus,
the next step is finding how long it takes for the image of a star to traverse 5 pixels.

The longest distance contained in a square is its diagonal.

Thus, the distance this point star’s image needs to move across the sensor is hence:

s = 5lpx

√
2 = 27.6nm

Because this setup is the same as part (c), the PS = 687.6”/mm. Thus, using these two pieces of
information we can find out how much the stars need to travel across the sky to produce an image
that travels 27.6nm on the sensor:

θ = PS × s = 18.98”
We have this distance, we just need the speed at which the stars travel to find time. Since we are
photographing the Wild Duck Cluster (M11) that is located near the Celestial Equator (CE) and
having a rather zoomed in view, we can assume that the stars imaged all move across the night sky
at the same rate as those stars on the CE. Thus, we can then find the answer:

T = θ

ω
= 18.98”

15°/h

= 1.27s

Note from QM: This question, although engineered slightly, was meant to give an introduction to
the 300/500 rule in Astrophotography. The rule-of-thumb is a handy way of calculating the longest
exposure time I can take before star trails become apparent. To use it, simply do the following:

Tmax =
{

300
f For crop-sensors

500
f For full-frame sensors
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Additional Note: M11 has a declination of δ = 06°16′12”. If we were to centre our camera on it
and positioned the camera in such a way that we maximised the range of declination captured using
the longer edge, we will be able to observe stars with declination of δm = 08°30′51.3”. Their angular
speed would be ωm = ω cos δm = 14.83°/h. This constitutes a 1% difference.

(f) If James switches to his 35.0mm lens to get a wide-field shot of the winter night sky,
give a brief explanation on whether his maximum exposure time will go up or down. [2]

Solution:

His maximum exposure time will go up.

Having a wider field, the images of the stars will travel slower across the sensor. Thus, to cover the
same distance, a longer amount of time is needed and thus our maximum exposure time before star
trails become visible increases.

Note: This question is not asking about overexposure as I did not give you data on the other
settings of the camera like ISO, f/number etc. It is a real concern though.
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Part IV Reality and Noise
In the real world and because of how a sensor works, sometimes a sensor pixel will randomly send an
output signal saying it got hit by a photon when it did not. This is the source of Noise in a picture and
gives rise to a grainy background.

In Astrophotography, noise is much more apparent as we work in a low-light environment and noise can
become significant. There are multiple sources where such noise can come from, but today we will only
limit ourselves to that of random thermal noise.

We will define the quality of an Astro image using the concept of Signal-to-Noise Ratio (SNR), where the
signal (stars) is much brighter than the noise. A higher SNR is a better image in our books. Mathematically,
we can define the SNR of an image/group of pixels as follows:

SNR = Total Source Count
σNoise

σNoise =
√

Npx · r · T

Where Npx is the number of pixels of interest (how many pixels the object covers on the sensor), T is the
exposure length and r is the thermal noise rate of the sensor of 3 counts/px every minute.

After reading up about noise, James consults his Astronomy teacher who did his thesis on radio and CCD
imaging. There, he is introduced the idea of a Zero-Point Magnitude (ZPM). In short, it is the measure of
the sensitivity of the sensor. Recalling more, James remembered his teacher saying:

"If I say my sensor’s ZPM is 21, it means that when I expose my whole sensor to a source of apparent

magnitude 21 and allow all the pixels to see it, each and every pixel in the sensor will output 1 count per

second.

So when I expose the sensor to a brighter source, the output count rate will increase proportionally with

the intensity of the source."

(g) If James’ camera sensor has a ZPM of 16 mag, calculate the SNR for a point-source star
of apparent magnitude 10, given that James did a 3-second exposure with his 120mm
lens. [4]

Solution:

We first need to find the Count Rate (CR) for a star with magnitude 10. Since the output CR is
dependent on the number of photons hitting it (i.e. Light Source’s Intensity): CR ∝ I.

We can use Pogson’s Law and replace I with CR and other relevant variables.

m2 − m1 = −2.5 lg
(

I2

I1

)

mstar − mZP M = −2.5 lg
(

CRstar

CRZP M

)
Since we want to find the CR for a magnitude 10 star:

CRstar = CRZP M × 10
mZP M −mstar

2.5

= 251.2 count/s

Again, the star will fit into 1 pixel, thus:
Npx = 1
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Thus, the noise is correspondingly:

σnoise =
√

Npx · r · T =

√
1 ·
(

3
60

)
· 3

=
√

15
10

Thus, the SNR is:

SNR = Total Source Count
σnoise

= CRstar · T

σnoise

= 649

Note from QM: In radio and other forms of observational astronomy, our objects have a finite size
and is also limited by Seeing. Therefore, the image will span over multiple pixels and this is where
Npx comes in. There are also other forms and sources of noise that are affected by the equipment and
environment. The idea still stands but the two equations given will change slightly.
For further reading, see Readout Noise and Dark Current.
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Part V Targeting
James has decided to go on his adventure on 30 June 2022. His goal is to capture the bulge of the Milky
Way which passes through the constellation of Sagittarius. That night is the night of a New Moon.

The star Alnasl (γ Sgr) in the teapot asterism is almost right smack in the middle of the bulge of
the Milky Way.

Alnasl Stellar Details Value
Right Ascension 18h07m16s

Declination −30°25′23.9′′

Table 3: Alnasl Stellar Details

(h) Given further details that James will be at 2.540°N, 103.82°E, estimate the local civil time
when Alnasl reaches upper culmination. Local Noon occurs at 13:08 local civil time.

Note: The location also follows the time zone GMT+8, identical to Singapore. [4]

Solution:

Alnasl will reach upper culmination when it crosses the Meridian. This happens when the Local
Sidereal Time (LST) equals to the RA of Alnasl.

The date is 30 June, which is 9 days after the Summer Solstice. This means the RA of the
Sun is:

RA⊙ = 6h + 9
365.25 × 24h = 06h35m29s

Since local noon was at 1308hrs local civil time, this means that the LST at that Local Civil Time
(LT) was 06h35m29s.

Thus, the LT when Alnasl reaches Upper Culmination is:

LT = LST + ∆T = LST + (LTNoon − LSTNoon)

= 18h07m16s + (13h08m − 06h35m29s)

= 24h39m47s

= 00h39m47s

Thus Alnasl will reach upper culmination at LT 0039hrs.

∼ FIN ∼
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